• Title/Summary/Keyword: After implantation of 3 weeks

Search Result 143, Processing Time 0.028 seconds

Neo- and Re- Vascularization in the Prefabricated Cutaneous Flap using Vascular Pedicle Implantation (혈관경 전위를 이용한 선조작 피부피판의 혈관화)

  • Lee, Byung-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.11 no.2
    • /
    • pp.125-134
    • /
    • 2002
  • This study was designed to investigate the process of re- or neo-vascularization in the prefabricated cutaneous flap using a skeletonized arteriovenous pedicle implantation. Fourty-eight flaps were divided into six groups of eight flaps, including control group of the conventional epigastric flap. In experimental groups, skin flap was fabricated by subcutaneous implantation of a distally ligated saphenous arteriovenous pedicle in left abdomen. At 2, 4, 6, 8, and 10 weeks after, prefabricated flap was elevated as an island flap based on implanted pedicle and sutured back in place. Three days after flap repositioning, the area of flap viability was quantified, the pattern of flap vascularization was evaluated with microangiography, and the quantification of vessels was assessed histologically. There were statistically significant differences in flap viability between group 2, 3, 4, and the control (p<0.05), with increased survival area in order. But Group 5 and 6 showed higher flap viability as much as the control did. In the microangiographis study, numerous small meander vessels were newly developed in the vicinity of the implanted pedicle just only 2 weeks after pedicle implantation, but neovascularization around the tip of implanted pedicle, and its anastomosis with native vasculatures was more important for overall flap survival, which was usually developed at least 4 weeks after pedicle implantation. Histologically, vessels are evenly spread over all layers of the flap at 6 weeks after pedicle implantation. The quantification of vessels was correlated well with the improvement of flap viability (p<0.05). In conclusion, neo- and re-vascularization around the tip of implanted pedicle was an important factor for overall survival of the prefabricated flap. Therefore, skeletonized pure vascular pedicle transfer, even though it used alone without surrounding was sufficient to get higher flap viability. The optimal duration of pedicle implantation was8 weeks to obtain maximal survival.

  • PDF

The Optimal Period of the Pedicles Implantation for the Patent Vasculature in the Prefabricated Periosteofascial Flap through the Vascular Pedicles Transfer (혈관조직의 전위를 이용한 선조작 골건막피판의 제작 시 안정된 혈관화를 위한 적절한 혈관경 이식기간)

  • Kim, Seo Hyun;Kim, Sang Bum;Lee, Byung Il
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.319-326
    • /
    • 2005
  • This study was designed to investigate the optimal period of pedicles implantation in the prefabricated periosteofascial flap using a vascular tissue transfer. Flap prefabrication was prepared with a transposition of the central pedicles of right auricle on the calvarium of the New Zealand white rabbit. Thirty flaps were divided into five groups of six flaps, including control group (group I) of the conventional periosteofascial flap based on the right lateral border of parietal bone. The prefabricated flap was elevated as a $2{\times}2cm$ sized island flap and reposed in place in 1, 2, 3, and 4 weeks after the pedicles transfer in groups II, III, IV, and V, respectively. Five days after flap repositioning, the flap viability and vascularity were evaluated with microangiography and histological study quantitatively. The flap survival was increased in accordance with the implanted period of the pedicle. New vessels developed around the implanted pedicle in the 2nd week, and overall vascularization of the flap was accomplished in the 3rd week. The flap with 4 weeks of implantation period, however, showed the same survival rate as the control group. In conclusion, prefabricated periosteo- fascial flap can be created with a vascular tissue transfer, and the optimal duration of the pedicle implantation is more than 4 weeks to obtain adequate flap survival.

Bone Healing around Screw - shaped Titanium Implants with Three Different Surface Topographies (임플란트의 표면처리 유형에 따른 골 치유 양상)

  • Koh, Young-Han;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.41-57
    • /
    • 2001
  • It is well known that the apposition of bone at implant surface would be influenced by the microstructure of titanium implants. The purpose of this study was to compare bone healing around the screw-shaped titanium implant with three different surface topographies in the canine mandibles by histological and biomechanical evaluation. All mandibular premolars of six mongrel dogs were extracted and implants were placed one month later. The pure titanium implants had different surface topographies: smooth and machined ($Steri-OSS^{(R)}$: Group II); sandblasted and acid-etched ($ITI^{(R)}$, SLA: Group III) surface. The fluorescent dyes were injected on the 2nd (calcein), 4th (oxytetracycline HCI) and 12th (alizarin red) weeks of healing. Dogs were sacrificed at 4 and 12 weeks after implantation. The decalcified and undecalcified specimens were prepared for histological and histo-metrical evaluation of implant-bone contact. Some specimens at 12 weeks after implantation were used for removal torque testing. Histologically, direct bone apposition to implant surface was found in all of the treated groups. More mature and dense bone was observed at the implant-bone interface at 12 weeks than that at 4 weeks after implantation. Under the fluorescent microscope, thick regular green fluorescent lines which mean early bone apposition were observed at the implant-bone interface in Group III, while yellow and red fluorescent areas were found at the implant-bone interface in Group I and II. The average implant-bone contact ratios at 4 weeks of healing were 54.3% in Group I, 57.7% in Group II and 66.2% in Group III. In Group I, implant-bone contact ratio was significantly lower than Group II and III(p<0.05). The average implant-to-bone contact ratios at 12 weeks after implantation were 64.3% in Group I, 66.7% in Group II and 71.2% in Group III. There was no significant difference among the three groups. In Group I and II, the implant-bone contact ratio at 12 weeks increased significantly in comparison to ratio at 4 weeks(p<0.05). The removal torque values at 12 weeks after implantation were 90.9 Ncm in Group I, 81.6 Ncm in Group II and 77.1 Ncm in Group III, which were significantly different(p<0.05). These results suggest that bone healing begin earlier and be better around the surface-treated implants compared to the smooth surface implants. The sandblasted and acid-etched implants showed the most favorable bone response among the three groups during the early healing stage and could reduce the waiting period prior to implant loading.

  • PDF

Experimental Evaluation of Algin-coated Vascular Grafts in Dogs (잡견에서의 알진 코팅 인조혈관 삽입실험)

  • 김원곤
    • Journal of Chest Surgery
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 1995
  • Microvel knitted double velour vascular grafts coated with biodegradable algin were evaluated in the canine experimental model as a new biologically coated Dacron graft. Three series of implantations were conducted involving the insertion of 6 mm diameter grafts in the abdominal aortae of mongrel dogs. The first series used the regular Microvel vascular grafts coated with algin,whereas the second and third series used Hemashield [collagen-coated grafts and the regular Microvel grafts with preclotting,respectively as control groups. Each series involved the implantation of one prosthesis for each of 2 preselected periods,namely 3 months and 6 months. In addition,algin-impregnated grafts were implanted for 4 hours,72 hours,2 weeks,and 4 weeks. All grafts were patent when the animals were sacrificed at intervals ranging from 4 hours to 6 months. Histological examinations revealed no obvious or significant differences in the healing characteristics of the algin-coated grafts and the control grafts after 3 months and 6 months of implantation. Endothelial cell-like cells were present on the midsegments of all grafts explanted from animals sacrificed after 3 months and 6 months,except a suspicious finding in the 3 month-implantation animal of a preclotted graft. With special stains,the algin became invisible between the polyester filaments during the first 3 months of implantation. This study has demonstrated that the use of a biodegradable algin coating is a feasible approach as biological sealants for textile arterial prostheses.

  • PDF

HISTOMORPHOMETRIC STUDY OF DENTAL IMPLANTS WITH DOUBLE ACID-ETCHED AND ANODIC OXIDIZED SURFACE IN THE RABBIT TIBIA (토끼 경골에서 치과용 임프란트의 이중 산부식 및 양극 산화 표면처리에 따른 조직계측학적 연구)

  • Han, Ye-Sook;Kim, Il-Kyu;Chang, Keum-Soo;Park, Tae-Hwan;Jeon, Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.434-444
    • /
    • 2006
  • This study was performed to evaluate the effects of three different implant surface treatments to the bone formation during osseous healing period under unloading conditions. Machined, double-acid etched and anodic oxidized implants were inserted into tibia of 3.0 - 3.5 kg NZ white male rabbits and 2 animals of each group were sacrificed at 2, 4 and 8 weeks. The specimens containing implant was dehydrated and embedded into hard methylmethacrylate plastic. After grinding to $50{\mu}m$, the specimens were stained with Villanueva bone stain. From each specimen, histomorphometric evaluation and the bone implant contact rate were analysed with optical microscope. The results were as follows; 1. In the scanning electronic microscopic examination, machined surface implant had several shallow and paralleled scratches on plain surface, double acid-etched implant had lots of minute wrinkles, rough valley and also irregularly located craters that looked like waves, anodic oxidized surface implant had porosity that minute holes were wholly distributed on the surface. 2. After 2 weeks of implantation, the percentages of bone-to-implant contact in the machined implant, double acid-etched implant and anodic oxidized implant were 26.85%, 62.64% and 59.82%, after 4 weeks of implantation they were 64.29%, 77.85% and 75.23%, and after 8 weeks they were 82.66%, 85.34% and 86.39%. 3. After 2 weeks of implantation, the percentages of bone area between threads in the machined implant, double acid-etched implant and anodic oxidized implant were 21.55%, 42.81%, and 40.33%, after 4 weeks of implantation they were 49.32%, 62.60% and 75.56%, and after 8 weeks they were 71.62%, 87.73% and 83.94%. In summary, percentages of implant surface contacted to bone trabeculae and bone formation area inside threads in double acid-etched implants and anodic oxidized implants were greater than machined implants in early healing stage. These results suggest that double acid-etched and anodic oxidized surface implants could reduce the healing period for osseointegration and may enable to do early function.

Effect of Amniotic Membrane to Reduce Postlaminectomy Epidural Adhesion on a Rat Model

  • Choi, Hyu-Jin;Kim, Kyoung-Beom;Kwon, Young-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.6
    • /
    • pp.323-328
    • /
    • 2011
  • Objective : Epidural fibrosis and adhesion are the main reasons for post-laminectomy sustained pain and functional disability. In this study, the authors investigate the effect of irradiated freeze-dried human amniotic membrane on reducing epidural adhesion after laminectomy on a rat model. Methods : A total of 20 rats were divided into two groups. The group A did not receive human amniotic membrane implantation after laminectomy and group B underwent human amniotic membrane implantation after laminectomy. Gross and microscopic findings were evaluated and compared at postoperative 1, 3 and 8 weeks. Results : The amount of scar tissue and tenacity were reduced grossly in group of rats with human amniotic membrane implantation (group B). On a microscopic evaluation, there were less inflammatory cell infiltration and fibroblast proliferation in group B. Conclusion : This experimental study shows that implantation of irradiated freeze-dried human amniotic membrane reduce epidural fibrosis and adhesion after spinal laminectomy in a rat model.

Effect of Low Intensity Pulsed Ultrasound with Adipose-Derived Stem Cells on Bone Healing around a Titanium Implant in Tibia of Osteoporosis-Induced Rats (골다공증 유도 백서 경골에 티타늄 임플랜트 매식 시 지방조직유래 줄기세포 주입과 저출력 초음파 적용이 골치유에 미치는 영향)

  • Lee, Kwang-Ho;Choi, Yeon-Sik;Shin, Sang-Hun;Chung, In-Kyo;Kim, Gyoo-Cheon;Kim, Cheol-Hun;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.199-209
    • /
    • 2011
  • Purpose: Osteoporosis, is a major health problem for the elderly and post-menopausal women and shown to alter the properties of bone as well as impair bone healing around titanium implants in both human and animals. The objective of this study was to examine the effect of LIPUS with adipose-derived stem cells on the healing process around a titanium implant in rats with osteoporosis. Methods: Sixteen osteoporosis-induced rats were divided into two groups: an adipose-derived stem cell injected with Low Intensity Pulsed Ultrasound (LIPUS) application group and a control group. Titanium screw implants (diameter, 2.0 mm: length, 3.5 mm, Cowell Medi, Korea) were placed into both tibia of 16 rats, on 8 rats as the control group and the other 8 rats as the experimental group. Rats were sacrificed at different intervals from 1, 2, 4 and 8 weeks after implantation for histopathologic and immunohistochemical analyses. Results: Histopathological analysis revealed newly formed bone in experimental group earlier than that in control group. Especially at 1 week after implantation, more amounts of new bone matrix and collagen around the implant in the experimental group were seen compared with the control group. Immunohistochemical analysis showed that the levels of osteoprotegerin (OPG) expression in the experimental group were increased at early stages compared with that of control group until 2 weeks after implantation. But after 2 weeks, the expression level of OPG similar in both groups. The expression levels of receptor activator of nuclear factor kB ligand (RANKL) were stronger in the experimental group than the control group until 2 weeks after implantation. After 4 weeks, expression of RANKL in experimental group was similar to the control group. Conclusion: The results of this study suggest that LIPUS with Adipose-Derived Stem Cells in implantation could promote bone healing around titanium implants in rats with osteoporosis.

A BIOLOGICAL EVALUATION OF HIGH COPPER AMALGAM AND GLASS IONOMER-SILVER CEMENT (고동아말감과 Glass ionomer-silver cement의 생물학적 평가에 관한 연구)

  • Oh, Boeng-Won;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.1-16
    • /
    • 1990
  • This study was to evaluate the cytotoxic effect in vitro and the tissue response within the rat peritoneal cavity to high copper amalgam and glass ionomer-silver cement, suggested for use as a retrograde endodontic filling material. In the cytotoxicity experiment, the radioactively ($^{51}Cr$) labeled L929 mouse fibroblasts were employed to determine the relative cytotoxicity of two experimental materials. Those materials were evaluated immediately after set and after one and seven days setting. In the tissue response experiment, two experimental materials were to evaluate mean peritoneal cellular count, differential cell count and the content of silver and copper in pooled packed cells and eluate samples taken by peritoneal lavage technique, and compared with surgical control after one day. two, four and six weeks of implantation. The results were as following: 1. High copper amalgam exhibited significant cytotoxicity immediately after set but showed no sign of toxicity after one day and seven days setting materials. 2. Glass ionomer-silver cement showed no sign of toxicity immediately after set and after one day and seven days setting. 3. High copper amalgam and glass ionomer-silver cement groups produce no significant difference in the mean peritoneal cell count when compared with the surgical control group after one day, two and four weeks of implantation. Surgical control group exhibited significantly a greater cell count when compared with the High copper amalgam group after six weeks. 4. High copper amalgam group increased significantly in the percentage macrophages after four and six weeks of implantation when compared with surgical control group. 5. The trace metal analysis involved an increased silver content in the elutes and an increased copper content in the packed cells of high copper amalgam group, and an increased silver content in the packed cells and elutes of glass ionomer-silver cement group.

  • PDF

Effects of electrical stimulation on healing of endo-osseous titanium implants in circumferential defect (전기자극이 성견 골결손부에 매식된 임플란트 주위조직의 치유에 미치는 영향)

  • Shim, Jae-Chang;Kim, Young-Jun;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.177-193
    • /
    • 2004
  • Several experimental studies showed that the application of small amounts of electric current to bone stimulated osteogenesis at the site of the cathode and suggested that electrical currents promote osseointegration around dental implants. The purpose of this study was to determine the effect of direct microcurrent to endosseous titanium implants placed in bone defects. The right and left 2nd, 3rd and 4th mandibular premolars in ten mongrel dogs (15Kg of weight) were extracted. One monthe later, Ti-machined screw type implants(3.8 mm diameter x 8.5 mm length, $AVANA^{(R)}$, Ostem) were placed in surgically created circumferential defect area(width 5mm, depth 4mm). The implants were divided into three groups according to the treatment modalities: Control group- implants without electrical stimulation; Experimental group I- implants with allogenic demineralized freeze dried bone grafting; and Experimental group II-implants allogenic demineralized freeze dried bone grafting and electric stimulation. The animals were sacrificed in the 4th and 8th week after implant placement and un-decalcified specimens were prepared for histological and histometrical evaluation of bone-implant contact ratio (BIC) and bone formation area ratio (BFA) in defect area. Some specimens at 8 weeks after implantation were used for removal torque testing. Histologically, there was connective tissue infiltration in the coronal part of defect area in control and the experimental group I, whereas direct bone contact was found in the experimental group II without connective tissue invasion. Average BIC ratios at 4 weeks of healing were 60.1% in the experimental group II, 47.4% in the experimental group I and 42.7% in the control. Average BIC ratios at 8 weeks after implantation were 67.6% in the experimental group II, 55.9% in the experimental group I and 54.6% in the control. The average BFA ratio was 84.0% in the experimental group II, 71.8% in the experimental group I and 58.8% in the control at 4 weeks, and the BFA ratios were 89.6% in the experimental group II, 81.4% in the experimental group I and 70.5% in the control at 8 weeks after implantation. The experimental group II showed also significantly greater BIC and BFA ratios compared to the control and the experimental group I (p<0.05). The removal torque values at 8 weeks after implantation were 56 Ncm in the experimental group II, 49 Ncm in the experimental group I and 43 Ncm in the control. There was a statistically significant difference among 3 groups (p<0.05). These results suggest that electrical stimulation improve and accelerate bone healing around endosseous titanium implants in bone defect.

Biomineralization of three calcium silicate-based cements after implantation in rat subcutaneous tissue

  • Ranjdar Mahmood Talabani;Balkees Taha Garib;Reza Masaeli;Kavosh Zandsalimi;Farinaz Ketabat
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the dystrophic mineralization deposits from 3 calcium silicate-based cements (Micro-Mega mineral trioxide aggregate [MM-MTA], Biodentine [BD], and EndoSequence Root Repair Material [ESRRM] putty) over time after subcutaneous implantation into rats. Materials and Methods: Forty-five silicon tubes containing the tested materials and 15 empty tubes (serving as a control group) were subcutaneously implanted into the backs of 15 Wistar rats. At 1, 4, and 8 weeks after implantation, the animals were euthanized (n = 5 animals/group), and the silicon tubes were removed with the surrounding tissues. Histopathological tissue sections were stained with von Kossa stain to assess mineralization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX) were also used to assess the chemical components of the surface precipitates deposited on the implant and the pattern of calcium and phosphorus distribution at the material-tissue interface. The calcium-to-phosphorus ratios were compared using the non-parametric Kruskal-Wallis test at a significance level of 5%. Results: The von Kossa staining showed that both BD and ESRRM putty induced mineralization starting at week 1; this mineralization increased further until the end of the study. In contrast, MM-MTA induced dystrophic calcification later, from 4 weeks onward. SEM/EDX showed no statistically significant differences in the calcium- and phosphorus-rich areas among the 3 materials at any time point (p > 0.05). Conclusions: After subcutaneous implantation, biomineralization of the 3-calcium silicate-based cements started early and increased over time, and all 3 tested cements generated calcium- and phosphorus-containing surface precipitates.