• Title/Summary/Keyword: Affinity binding

Search Result 792, Processing Time 0.024 seconds

Drug-Biomacromolecule Interaction (XIII)-Effect of ionic Strength, pH and Temperature on Binding of Cephalothin to Bovine Serum Albumin- (약물과 생체고분자 간의 상호작용(제 13보)-세파로친과 소혈청알부민의 결합에 미치는 이온강도, pH 및 온도의 영향)

  • Kim, Chong-Kook;Lim, Yun-Su;Yang, Ji-Sun;Jeong, Eun-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.3
    • /
    • pp.163-171
    • /
    • 1989
  • To investigate the protein binding characteristics of cephalothin, the effects of ionic strength, pH and temperature on the binding of cephalothin to bovine serum albumin (BSA) were studied by UV difference spectrophotometric method. With increasing ionic strength at constant PH and temperature, association constant decreased, but the number of binding sites sites was about 2 constantly. It may be deduced that the binding process is not only due to electrostatic forces. And the increased association constant at high ionic strength is explained by conformational changes of BSA from complex to subunits. The pH effect on the affinity of interaction indicated that the binding affinity of drug is higher in the neutral region than in the alkaline region. And, at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational changes of BSA in alkaline region. The decrease in binding affinity of BSA to drug with increasing temperature was characteristic of an exothermic reaction. And the negative sign of ${\Delta}G^{\circ}$ meant that the binding process occurs spontaneously under the experimental conditions. In cephalothin-BSA complex formation, since the net enthalpy change value and entropy change value are positive, it is assumed that hydrophobic bindings are predominant in this binding process.

  • PDF

The Carboxyl Terminal Amino Acid Residues Glutamine276-Threonine277 Are Important for Actin Affinity of the Unacetylated Smooth ${\alpha}$-Tropomyosin

  • Cho, Young-Joon
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.531-536
    • /
    • 2000
  • Tropomyosin (TM) is an important actin binding protein involved in regulation of muscle contraction. Unacetylated striated tropomyosin failed to bind to actin whereas unacetylated smooth tropomyosin bound well to actin. It has been demonstrated that high actin affinity of unacetylated ${\alpha}-tropomyosin$ was ascribed to the carboxyl terminal amino acid residues. In order to define the role of the carboxyl terminal residues of tropomyosin molecule on actin binding, two mutant tropomyosins were constructed. TM11 is identical to the striated tropomyosin except that the carboxyl terminal last three amino acids was replaced with $^{282}NNM^{284}$ whereas in TM14 $^{276}HA^{277}$ was substituted with smooth specific $^{276}QT^{277}$. TM11 and TM14 were overproduced in Escherichia coli and analyzed for actin affinity. The apparent binding constants (Kapp) of unacetylated tropomyosins were $2.2{\times}10^6M^{-1}$ for sm9, $1.03{\times}10^6M^{-1}$ for TM14, $0.19{\times}10^6M^{-1}$ for TM11, $>0.1{\times}10^6M^{-1}$ for striated, respectively. This result indicated that higher actin affinity of the unacetylated smooth tropomyosin was primarily attributed to the presence of QT residues in the smooth sequence. In case of the Ala-Ser (AS) dipeptide extension of the amino terminus of tropomyosin, Kapp were $21.1{\times}10^6M^{-1}$ for AS-sm9, $8.0{\times}10^6M^{-1}$ for AS-11, $4.7{\times}10^6M^{-1}$ for AS-14, $3.8{\times}10^6M^{-1}$ for AS-striated. AS-TM11 showed considerably higher actin affinity than AS-TM14, implying that interaction of Ala-Ser of the amino terminus with the carboxyl terminal residues. Since Kapp of AS-TM11 was significantly lower than that of AS-sm9, the presence of QT might be required for restoration of high actin affinity of the smooth ${\alpha}-tropomyosin$. These results suggested that the carboxyl terminal amino acid residues Glutamine275-Threonine276 are important for actin affinity of the recombinant smooth ${\alpha}-tropomyosin$, particularly of unacetylated smooth ${\alpha}-tropomyosin$.

  • PDF

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

  • Watanabe, Hirofumi;Tanaka, Shigenori
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.6.1-6.5
    • /
    • 2010
  • Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.

NMR Study of Temperature-Dependent Single-Stranded DNA Binding Affinity of Human Replication Protein A

  • Kim, Min-Gyu;Shin, Tae-Hoan;Choi, Seo-Ree;Choi, Jae-Gyu;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.66-70
    • /
    • 2016
  • The replication protein A (RPA), is a heterotrimer with 70, 32 and 14 kDa subunits and plays a crucial role in DNA replication, recombination, and repair. The largest subunit, RPA70, binds to single-stranded DNA (ssDNA) and mediates interactions with many cellular and viral proteins. In this study, we performed nuclear magnetic resonance experiments on the complex of the DNA binding domain A of human RPA70 (RPA70A) with ssDNA, d(CCCCC), at various temperatures, to understand the temperature dependency of ssDNA binding affinity of RPA70A. Essential residues for ssDNA binding were conserved while less essential parts were changed with the temperature. Our results provide valuable insights into the molecular mechanism of the ssDNA binding of human RPA.

Structural and Thermodynamic Characteristics of cHLH Peptide and cHLH/HDM2 Complex

  • Im, Haeri;Cho, Sunhee;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.62-66
    • /
    • 2016
  • Tumor suppressor protein p53 loses its function upon binding with the HDM2 protein, and inhibiting the p53-HDM2 interaction is critical to suppress tumor cell growth. Recently, the cyclized helix-loop-helix peptide (cHLH) mimicking the ${\alpha}-helix$ part of the p53 protein has been designed and found to exhibit high binding affinity with HDM2. Here, we report the structural and thermodynamic characteristics of the bound complex of the cHLH peptide with the HDM2 protein. We performed molecular dynamics simulations to investigate the structural features of the cHLH peptide as well as its complex with the HDM2. The binding free energy calculation based on the integral equation theory was also executed to quantify the binding affinity for the cHLH/HDM2 complex and to understand the factors contributing to the binding affinity. We found a variety of factors for the helix stability of the cHLH peptide as well as in the complexation with the HDM2, which may provide an insight into the development of anti-cancer drug designs.

  • PDF

Functional Studies of Cysteine Residues in Human Glutathione S-Transferase P1-1 by Site-Directed Mutagenesis

  • Park, Hui Jung;Lee, Gwang Su;Gong, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • To gain further insight into the relationship between structure and function of glutathione S-transferase (GST), the four cysteine mutants, C14S, C47S, C101S and C169S, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized glutathione (GSH). The catalytic activities of the four mutant enzymes were characterized with five different substrates as well as by their binding to four different inhibitors. Cys14 seems to participate in the catalytic reaction of GST by stabilizing the conformation of the active-site loop, not in the GSH binding directly. The substitution of Cys47 with serine significantly reduces the affinity of GSH binding, although it does not prevent GSH binding. On the other hand, the substitution of Cys101 with serine appears to change the binding affinity of electrophilic substrate by inducing a conformational change of the $\alpha-helix$ D. Cys169 seems to be important for maintaining the stable conformation of the enzyme. In addition, all four cysteine residues are not needed for the steroid isomerase activity of human glutathione S-transferase P1-1.

Selectivity of Oxomemazine for the $M_1$ Muscarinic Receptors

  • Lee, Shin-Woong;Woo, Chang-Woo;Kim, Jeung-Gu
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.443-451
    • /
    • 1994
  • The binding characteristics of pirenzepine and oxomemazine to muscarinic receptor were studied to evaluate the selectivity of oxomemazine for the muscarinic receptor subtypes in rat cerebral microsomes. Equililbrium dissociation constant $(K_D){\;}of{\;}(-)[^3H]$quinuclidinyl benzilate$([^3H)QNB)$ determined from saturation isotherms was 64-pM. Analysis of the pirenzepine inghibition curve of [$^3H$]QNB binding to cerebral microsome indicatd the presence of two receptor subtypes with high $(K_1 = 16 nM, M_1 receptor)$two receptor subypes with about 20-fold difference in the affinity for high $(k_1 = 84nM, {\;} O_H receptor){\;} and {\;}low{\;} (K_1{\;} ={\;} 1.65\muM, {\;} O_L receptor$) affinity sites. The percentage populations of $M_1{\;} and M_3$, /TEX> receptors to the total receptors were 61 : 39, and those of $O_H{\;} and{\;} O_L$ receptors 39 : 61, resepectively. Both pirenzepine and oxomemazine increaed the $K_D$ value for $[^3H]QNB$ without affecting the binding site concentrations and Hii coefficient for the $[^3H]QNB$ without affecting the binding site concentractions and Hill coefficient for the [$^{3}$H]QNB binding. Oxomemazine had a 10-fold higher affinity at $M_1$ receptors than at $M_3$ receptors, and pirenzepine a 8-fold higher affinity at $O_H$ receptors were of $O_H$ receptors and 71% of $M_3$ receptors. However, $M_3$for oxomemazine and $O_H$for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could be classified as a selective drug for $M_1$ receptors and also demonstrate that rat cerebral microsomes contain three different subtypes of $M_1{\;} M_3$ and the other site which is different from $M_1, {\;} M_2$, /TEX> receptors.

  • PDF

Specific Recognition of Unusual DNA Structures by Small Molecules: An Equilibrium Binding Study

  • Suh, Dong-Chul
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The binding interaction of ethidium to a series of synthetic deoxyoligonucleotides containing a B-Z junction between left-handed Z-DNA and right-handed B-DNA, was studied. The series of deoxyoligonucleotides was designed so as to vary a dinucleotide step immediately adjacent to a B-Z junction region. Ethidium binds to the right-handed DNA forms and hybrid B-Z forms which contain a B-Z junction, in a highly cooperative manner. In a series of deoxyoligonucleotides, the binding affinity of ethidium with DNA forms which were initially hybrid B-Z forms shows over an order of magnitude higher than that with any other DNA forms, which were entirely in B-form DNA The cooperativity of binding isotherms were described by an allosteric binding model and by a neighbor exclusion model. The binding data were statistically compared for two models. The conformation of allosterically converted DNA forms under binding with ethidium is found to be different from that of the initial B-form DNA as examined by CD spectra. The ratio of the binding constant was interestingly correlated to the free energy of base unstacking and the conformational conversion of the dinucleotide. The more the base stacking of the dinucleotide is unstable, or the harder the conversion of B to A conformation, the higher the ratio of the binding constant of ethidium with the allosterically converted DNA forms and with the initial B-Z hybrid forms. DNA sequence around a B-Z junction region affects the binding affinity of ethidium. The results in this study demonstrate that ethidium could preferentially interact with unusual DNA structures.

  • PDF

Functional Characterization of the Squid Calexcitin-2, a Calcium and GTP-binding Protein

  • Park, Sae-Young;Nelson, Thomas J.;Alkon, Daniel L.;Kim, Jeong-Ho
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.391-395
    • /
    • 2000
  • Calexcitin, a calcium-binding protein, was previously cloned and functionally characterized in the squid Loligo pealei. We now report the cloning of a second form of Calexcitin, Calexcitin-2, found in the squid Todarodes pacificus optic lobe. Calexcitin-2 has a significantly different carboxyl terminal region than Calexcitin-1. It lacks the CAAX motif, which is a farnesylation site. The amino acid sequence of Calexcitin-2 shows an 84% identity with Calexcitin-1 and also displays a strong cross immunoreactivity. Western blotting shows that Calexcitin-2 was expressed exclusively in the optic lobe region of squid, but not in other body organs. Regardless of its lack of conserved regions for GTP-binding, Calexcitin-2 shows moderately low affinity GTP-binding and also shows dramatic conformational change induced by GTP-binding. Three possible GTP-binding region mutations, K142A, D144A, and K157A, did not change the G TP binding affinity. This raises the possibility that Calexcitin-2 may have a novel GTP-binding motif.

  • PDF

Prediction of Relative Stability between TACE/Gelastatin and TACE/Gelastatin Hydroxamate

  • Nam, Ky-Youb;Han, Gyoon-Hee;Kim, Hwan-Mook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3291-3296
    • /
    • 2010
  • A gelastatins (1), natural MMP inhibitors, and their hydroxamate analogues (2) in TACE enzyme evaluated for discovery of potent TACE inhibitors. We have employed molecular dynamics simulations to compute the relative free energy of hydration and binding to TACE for gelastatin (1) and its hydroxamate analogue (2). The relative free energy difference is directly described in this article using the free energy perturbation approach as a means to accurately predict the TACE inhibitor of gelastatin analogues. The results show that the good agreement between the experimental and theoretical relative free energies of binding, gelastatin hydroxamate (2) binds stronger to TACE by -3.37 kcal/mol. The desolvation energy costs significantly reduced binding affinity, hydroxamate group associated with high desolvation energy formed strong favorable interactions with TACE with more than compensated for the solvation costs and therefore led to an improvement in relative binding affinity.