Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.11.3291

Prediction of Relative Stability between TACE/Gelastatin and TACE/Gelastatin Hydroxamate  

Nam, Ky-Youb (Research Institute Bioinformatics & Molecular Design (BMD), Yonsei Engineering Research Complex)
Han, Gyoon-Hee (Department of Biotechnology, Yonsei University)
Kim, Hwan-Mook (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology)
No, Kyoung-Tai (Department of Biotechnology, Yonsei University)
Publication Information
Abstract
A gelastatins (1), natural MMP inhibitors, and their hydroxamate analogues (2) in TACE enzyme evaluated for discovery of potent TACE inhibitors. We have employed molecular dynamics simulations to compute the relative free energy of hydration and binding to TACE for gelastatin (1) and its hydroxamate analogue (2). The relative free energy difference is directly described in this article using the free energy perturbation approach as a means to accurately predict the TACE inhibitor of gelastatin analogues. The results show that the good agreement between the experimental and theoretical relative free energies of binding, gelastatin hydroxamate (2) binds stronger to TACE by -3.37 kcal/mol. The desolvation energy costs significantly reduced binding affinity, hydroxamate group associated with high desolvation energy formed strong favorable interactions with TACE with more than compensated for the solvation costs and therefore led to an improvement in relative binding affinity.
Keywords
Rheumatoid Arthritis; TACE; Zn-binding anchor; Gelastatin; Free energy perturbation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Frisch, M. J. et al. GAUSSIAN 03, Revision B2; Gaussian Inc.: Pittsburgh, PA, 2003.
2 Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 1993, 2, 799-805
3 Mezei, M. J. Chem. Phys. 1987, 86, 7084-7088.   DOI
4 Hagler, A. T.; Lifson, S.; Dauber, P. J. Am. Chem. Soc. 1979, 101, 5111-5121.   DOI
5 Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G. P.; Bartunik, H.; Ellestad, G. A. et al. Proc. Natl. Acad. Sci. USA 1998, 95, 3408-3412.   DOI
6 Stote, R. H.; Karplus, M. Proteins: Strut., Funct. and Gent. 1995, 23, 12-31.   DOI   ScienceOn
7 No, K. T.; Kwon, O. Y.; Kim, S. Y.; Jhon, M. S.; Scheraga, A. H. J. Phys. Chem. 1995, 99, 3478.   DOI   ScienceOn
8 van Gunsteren, W. F.; Mark, A. E. Eur. J. Biochem. 1992, 204, 947-961.   DOI   ScienceOn
9 Beveridge, D. L.; DiCapua, F. M. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492.   DOI
10 Essex, J. W.; Severance, D. L.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 1997, 101, 9663-9669.   DOI   ScienceOn
11 Beveridge, D. L.; DiCapua, F. M. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492.   DOI
12 McCammon, J. A. Curr. Opin. Struct. Biol. 1991, 1, 196-200.   DOI   ScienceOn
13 Rami, M. R.; Bacquet, R. J.; Zichi, D.; Matthews, D. A.; Welsh, K. M.; Jones, T. R. et al. J. Am. Chem. Soc. 1992, 114, 10117-10122.   DOI
14 Gao, J.; Kuczera, K.; Tidor, B.; Karplus, M. Science 1989, 244, 1069-1072.   DOI
15 Tropsha, A. J.; Hermans, J. Protein Eng. 1992, 5, 29-33.   DOI
16 Reddy, M. R.; Erion, M. D.; Agarwal A. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, USA, 2000; Vol. 16, pp 217-304.
17 Reddy, M. R.; Viswanadhan, V. N.; Weinstein, J. N. Proc. Natl. Acad. Sci. USA 1991, 88, 10287-10291.   DOI
18 Ferguson, D. M.; Radmer, R. J.; Kollman, P. A. J. Med. Chem. 1991, 34, 2654-2659.   DOI
19 Rao, B. G.; Tilton, R. F.; Singh, U. C. J. Am. Chem. Soc. 1992, 114, 4447-52.   DOI
20 Erion, M. D.; Reddy, M. R. J. Am. Chem. Soc. 1998, 120, 3295-3304.   DOI   ScienceOn
21 Merz, K. M.; Kollman, P. A. J. Am. Chem. Soc. 1989, 111, 5649-58.   DOI
22 Reddy, M. R.; Varney, M. D.; Kalish, V.; Viswanadhan, V. N.; Appelt, K. J. Med. Chem. 1994, 37, 1145-52.   DOI   ScienceOn
23 Nam, K.-Y.; Chang, B. H.; Han, C. K.; Ahn, S. K.; No, K. T. Bull. Korean Chem. Soc. 2003, 24, 817-823.   DOI   ScienceOn
24 Hu, X.; Balaz, S.; Shelver, W. H. J. of Mol. Graph. & Model. 2004, 22, 293-307.   DOI   ScienceOn
25 Kim, H. M.; Choi, H.-M.; Tae, H. S.; Kim, B. G.; Lee, H.-Y.; Nam, K.-Y. et al. Biochem. & Biophys. Res. Commun. 2006, 341, 627-634.   DOI   ScienceOn
26 Moreland, L. W.; Baumgartner, S. W.; Schiff, M. H.; Tindall, E. A.; Fleischmann, R. M.; Weaver, A. L. et al. N. Engl. J. Med. 1997, 337, 141-147.   DOI   ScienceOn
27 Smolen, J. S.; Steiner, G. Nature Rev. Drug Discovery 2003, 2, 473-488.   DOI   ScienceOn
28 Newton, R. C.; Decicco, C. P. J. Med. Chem. 1999, 42, 2295-2314.   DOI   ScienceOn
29 Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nature Rev. Drug Discovery 2003, 2, 736-746.   DOI   ScienceOn
30 Lipsky, P. E.; van der Heijde, D. M.; ST Clair, W. E.; Furst, D. E.; Breedveld, F. C.; Kalden, J. R. et al. N. Engl. J. Med. 2000, 343, 1594-1602.   DOI   ScienceOn
31 Black, R. A.; Rauch, C. T.; Kozlosky, C. J.; Peschon, J. J.; Slack, J. L.; Wolfson, M. F. et al. Nature 1997, 385, 729-733.   DOI   ScienceOn
32 Moss, M. L.; Jin, S. C.; Milla, M. E.; Burkhart, W.; Carter, H. L.; Chen, W.-J. et al. Nature 1997, 385, 733-736.   DOI   ScienceOn