• Title/Summary/Keyword: Affine-SIFT

Search Result 20, Processing Time 0.012 seconds

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

MEGH: A New Affine Invariant Descriptor

  • Dong, Xiaojie;Liu, Erqi;Yang, Jie;Wu, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1690-1704
    • /
    • 2013
  • An affine invariant descriptor is proposed, which is able to well represent the affine covariant regions. Estimating main orientation is still problematic in many existing method, such as SIFT (scale invariant feature transform) and SURF (speeded up robust features). Instead of aligning the estimated main orientation, in this paper ellipse orientation is directly used. According to ellipse orientation, affine covariant regions are firstly divided into 4 sub-regions with equal angles. Since affine covariant regions are divided from the ellipse orientation, the divided sub-regions are rotation invariant regardless the rotation, if any, of ellipse. Meanwhile, the affine covariant regions are normalized into a circular region. In the end, the gradients of pixels in the circular region are calculated and the partition-based descriptor is created by using the gradients. Compared with the existing descriptors including MROGH, SIFT, GLOH, PCA-SIFT and spin images, the proposed descriptor demonstrates superior performance according to extensive experiments.

Affine Invariant Local Descriptors for Face Recognition (얼굴인식을 위한 어파인 불변 지역 서술자)

  • Gao, Yongbin;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.375-380
    • /
    • 2014
  • Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature (크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Hyun-Soo;Lee, Seok-Lyong;Lim, Myung-Kwan;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.446-454
    • /
    • 2009
  • Among various region detector and shape feature extraction method, MSER(Maximally Stable Extremal Region) and SIFT and its variant methods are popularly used in computer vision application. However, since SIFT is sensitive to the illumination change and MSER is sensitive to the scale change, it is not easy to apply the image similarity retrieval. In this paper, we present a Scale and Rotation Invariant Region Feature(SRIRF) descriptor using scale pyramid, MSER and affine normalization. The proposed SRIRF method is robust to scale, rotation, illumination change of image since it uses the affine normalization and the scale pyramid. We have tested the SRIRF method on various images. Experimental results demonstrate that the retrieval performance of the SRIRF method is about 20%, 38%, 11%, 24% better than those of traditional SIFT, PCA-SIFT, CE-SIFT and SURF, respectively.

Marker Detection by Using Affine-SIFT Matching Points for Marker Occlusion of Augmented Reality (증강현실에서 가려진 마커를 위한 Affine-SIFT 정합 점들을 이용한 마커 검출 기법)

  • Kim, Yong-Min;Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.55-65
    • /
    • 2011
  • In this paper, a novel method of marker detection robust against marker occlusion in augmented reality is proposed. the proposed method consists of four steps. In the first step, in order to effectively detect an occluded marker, we first utilize the Affine-SIFT (ASIFT, Affine-Scale Invariant Features Transform) for detecting matching points between an enrolled marker and an input images with an occluded marker. In the second step, we apply the Principal Component Analysis (PCA) for eliminating outlier of the matching points in the enrolled marker. And then matching points are projected to the first and second axis for longest value and the shortest value of an ellipse are determined by average distance between the projected points and a center of the points. In the third step, Convex-hull vertices including matching points are considered as polygon vertices for estimating a geometric affine transformation. In the final step, by estimating the geometric affine transformation of the points, a marker robust against a marker occlusion is detected. Experimental results have shown that the proposed method effectively detects occlude markers.

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

Eye Region Extraction Using SIFT (SIFT를 이용한 눈동자영역 추출)

  • Jung, Jae-Jin;Hwang, Eui-Sung;Gong, Jae-Woong;Ju, Dong-Hyun;Kim, Doo-Young
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.41-44
    • /
    • 2006
  • 본 논문은 안면영상의 인증 요소로 사용되는 눈동자영역을 SIFT를 이용하여 추출해내는 방법을 제안하고 있다. 모델이 되는 눈동자영상과 추출 하고자 하는 입력영상의 SET 결과인 Keypoint descriptor를 이용하여 각각의 특징벡터를 구성하고 서로 정합한 후 두 특징 점들 사이에 affine transform이 존재하는지 판단하여 반수 이상에 대응하는 특징 점들에 대해 동일한 affine transform이 존재할 경우 눈동자영역이라고 판단하였다. 실험결과 학습과정이 없으므로 기존의 인식방법 보다 빠르게 영역을 추출하는 결과를 얻을 수 있었다.

  • PDF

Automatic Image-to-Image Registration of Middle- and Low-resolution Satellite Images Using Scale-Invariant Feature Transform Technique (SIFT 기법을 이용한 중.저해상도 위성영상간의 자동 기하보정)

  • Han, Dong-Yeob;Kim, Dae-Sung;Lee, Jae-Bin;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.409-416
    • /
    • 2006
  • To use image data obtained from different sensors and different techniques, the preprocessing step that registers them in a common coordinate system is needed. For this purpose, we developed the methodology to register middle- and low-resolution satellite images automatically. Firstly, candidate matching points were extracted using the Harris and Harris-affine algorithm. Secondly, we used the correlation coefficient, normalized correlation coefficient and SIFT algorithm to detect conjugate matching points from candidates. Then, to test the feasibility of approaches, we applied the developed methodology to various kinds of satellite images and compared results. The results clearly demonstrate that the methology using the SIFT is appropriate to register these multi-resolution satellite images automatically, compared with the classical cross-correlation.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.