• Title/Summary/Keyword: Aerosol optical depth

Search Result 101, Processing Time 0.039 seconds

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations (GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구)

  • Kang, Hyeongwoo;Choi, Wonei;Park, Jeonghyun;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.861-870
    • /
    • 2021
  • In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data (GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출)

  • Lee, Seoyoung;Choi, Myungje;Kim, Jhoon;Kim, Mijin;Lim, Hyunkwang
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.961-970
    • /
    • 2017
  • Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

RETRIEVING AEROSOL AMOUNT FROM GEOSTATIONARY SATELLITE

  • Yoon, Jong-Min;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.232-235
    • /
    • 2006
  • Using 30 days of hourly visible channel data and DIScrete Ordinate Radiative Transfer (DISORT) model (6S), Aerosol optical depth (AOD) at $0.55{\mu}m$ was retrieved over the East Asia. In contrast with the AOD retrieval using low-earth-orbit satellites such as MODIS (Moderate-Res olution Spectroradiometer) or MISR (Multiangle Imaging SpectroRadiometer), this algorithm with geostationary satellite can improve the monitoring of AOD without the limitation of temporal resolution. Due to the limited number of channels in the conventional meteorological imager onboard the geostationary satellite, an AOD retrieval algorithm utilizing a single visible channel has been introduced. This single channel algorithm has larger retrieval error of AOD than other multiple-channel algorithm due to errors in surface reflectance and atmospheric property. In this study, the effects of manifold atmospheric and surface properties on the retrieval of AOD from the geostationary satellite, are investigated and compared with the AODs from AERONET and MODIS. To improve the accuracy of retrieved AOD, efforts were put together to minimize uncertainties through extensive sensitivity tests. This algorithm can be utilized to retrieve aerosol information from previous geostationary satellite for long-term climate studies.

  • PDF

Assessing the Altitudinal Potential Source Contribution Function of Aerosol Optical Depth in the West Coast of Korean Peninsula during the DRAGON-KORUS-AQ Campaign (DRAGON-KORUS-AQ 기간 중 서해안 지역 에어로졸 광학 두께 고도별 PSCF 분석)

  • Oh, Sea-Ho;Kim, Jhoon;Shon, Zang-Ho;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • The altitudinal potential source contribution function (PSCFa) method was developed by considering topography and height of back trajectories. The PSCFa calculated on the contributions of trans-boundary transport to the hourly mean concentrations of aerosol optical depth (AOD) of the Aerosol Robotic Network (AERONET) in the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) KORea-US Air Quality (KORUS-AQ) campaign from March 31 to July 1 in 2016. Eastern China ($33^{\circ}N{\sim}35^{\circ}N$ and $119^{\circ}E{\sim}121^{\circ}E$) can be the major source of trans-boundary pollution to the western area in South Korea resulted from PSCFa (0~700 m). In this study, AOD by Moderate Resolution Imaging Spectroradiometer (MODIS) was compared to verify the source regions. Regionally, the effects of the long-range transport of pollutants from the eastern China on air quality in south Korea have become more significant over this period.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Estimations of the Optical Properties and Direct Radiative Forcing of Aerosol Chemical Components in PM2.5 Measured at Aewol Intensive Air Monitoring Site on Jeju Island (제주 애월 대기오염집중측정소의 PM2.5 에어로졸 화학성분 자료를 이용한 광학특성 및 직접적 복사강제력 추정 연구)

  • Park, Yeon-Hee;Song, Sang-Keun;Kang, Chang-Hee;Song, Jung-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.458-472
    • /
    • 2017
  • The optical properties and direct aerosol radiative forcing (DARF) of different aerosol components in $PM_{2.5}$ (water-soluble, insoluble, black carbon (BC), and sea-salt) were estimated using the hourly resolution data measured at Aewol intensive air monitoring site on Jeju Island during 2013, based on a modeling approach. In general, the water-soluble component was predominant over all other components with respect to its impact on the optical properties(except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD) at 500 nm for the water-soluble component was $0.14{\pm}0.14$ ($0.04{\pm}0.01$ for BC). The total DARF at the surface ($DARF_{SFC}$) and top of the atmosphere ($DARF_{TOA}$), and in the atmosphere ($DARF_{ATM}$) for most aerosol components(except for sea-salt) during the daytime were highest in spring and lowest in fall and/or summer. The maximum $DARF_{SFC}$ of most aerosol components occurred around noon (12:00~14:00 LST) during all seasons, while the maximum $DARF_{TOA}$ occurred in the afternoon (13:00~16:00 LST) during most seasons (except for spring). In addition, the estimated $DARF_{SFC}$ and $DARF_{ATM}$ of the water-soluble component were -20 to $-59W/m^2$ and +3.5 to $+14W/m^2$, respectively, while those of BC were -18 to $-29W/m^2$ and +23 to $+37W/m^2$, respectively.

A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model (대기복사모형을 이용한 위성영상의 대기보정에 관한 연구)

  • Oh, Sung-Nam
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.