• Title/Summary/Keyword: Aerosol mass concentration

Search Result 160, Processing Time 0.027 seconds

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Characteristics of Aerosol Size Distribution from OPC Measurement in Seoul, 2001 (OPC(광학적 입자 계수기)로 측정한 2001년 서울지역 에어로졸의 입경 분포)

  • 정창훈;전영신;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.515-528
    • /
    • 2003
  • The characteristics of one year observation aerosol data in Seoul, 200 I was studied using an OPC (Optical Particle Counter). The size resolved aerosol number concentrations of 0.3 ∼ 25 11m were measured. The results were compared with PM$_{10}$ mass concentration data under various meteorological conditions including dust and precipitation events. For fine particles whose diameter is less than 2.23 ${\mu}{\textrm}{m}$, the number concentration increases in the early morning which is considered due to transportation. while the coarse mode particles increase during daytime. This increase can be explained as local sources and human activities near sampling site. Hourly averaged data show that there exists diurnal variation. Generally, PM$_{10}$ data showed a similar tendency with OPC data. The size resolved OPC data showed that the particles of 0.5 ∼ 3.67 ${\mu}{\textrm}{m}$ are positively correlated with PM$_{10}$ data. The accumulated volume fraction of size resolved aerosol concentration in 0.5 ∼ 10 ${\mu}{\textrm}{m}$ showed that 0.5 ∼ 2.23 ${\mu}{\textrm}{m}$ particles occupied 59.2% of total aerosol volume of 0.5 ∼ 10 ${\mu}{\textrm}{m}$./TEX>.

Theoretical simulation on evolution of suspended sodium combustion aerosols characteristics in a closed chamber

  • Narayanam, Sujatha Pavan;Kumar, Amit;Pujala, Usha;Subramanian, V.;Srinivas, C.V.;Venkatesan, R.;Athmalingam, S.;Venkatraman, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2077-2083
    • /
    • 2022
  • In the unlikely event of core disruptive accident in sodium cooled fast reactors, the reactor containment building would be bottled up with sodium and fission product aerosols. The behavior of these aerosols is crucial to estimate the in-containment source term as a part of nuclear reactor safety analysis. In this work, the evolution of sodium aerosol characteristics (mass concentration and size) is simulated using HAARM-S code. The code is based on the method of moments to solve the integro-differential equation. The code is updated to FORTRAN-77 and run in Microsoft FORTRAN PowerStation 4.0 (on Desktop). The sodium aerosol characteristics simulated by HAARM-S code are compared with the measured values at Aerosol Test Facility. The maximum deviation between measured and simulated mass concentrations is 30% at initial period (up to 60 min) and around 50% in the later period. In addition, the influence of humidity on aerosol size growth for two different aerosol mass concentrations is studied. The measured and simulated growth factors of aerosol size (ratio of saturated size to initial size) are found to be matched at reasonable extent. Since sodium is highly reactive with atmospheric constituents, the aerosol growth factor depends on the hygroscopic growth, chemical transformation and density variations besides coagulation. Further, there is a scope for the improvement of the code to estimate the aerosol dynamics in confined environment.

Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan (서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화)

  • Lee, S.;Ghim, Y.S.;Kim, S.W.;Yoon, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

Real-time measurements and modeling of sodium combustion aerosol dynamics in test chamber to improve the evaluation of SFR containment aerosol behaviour

  • Usha Pujala;Amit Kumar;Subramanian Venkatesan;Sujatha Pavan Narayanam;Venkatraman Balasubramanian
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3483-3490
    • /
    • 2024
  • The initial size distribution and morphological parameters of sodium aerosols are critical in evaluating the accidental suspended aerosol behaviour in Sodium-cooled Fast Reactor (SFR) containment. Mass-based measurements were more familiar in characterizing the sodium aerosols. Real-time number size distribution measurements are carried out in this study. The sensitivity analysis of sodium aerosol effective density (ρe) in deriving the actual number size distributions from the measured Aerodynamic Particle Size Distributions (APSD) and predicting suspended aerosol dynamics is presented. Tests are conducted in a 1 m3 chamber at 47 ± 3% RH for different initial mass concentrations (M0) of 0.1, 1, and 2.9 g/m3. The initial APSDs measured just after the generation completions are observed to be polydisperse with the count median aerodynamic diameter (CMAD) < 1 ㎛. The literature reported ρe values of sodium aerosols, 2.27, 1.362, and 0.61 g/cm3 are used to derive mobility equivalent PSDs from APSD in each test. The real-time number concentration decay and size growth for four different PSDs are measured and compared with the estimate using nodal method-based code to ascertain the actual parameters. The validated parameters CMD = 0.66 ㎛, σg = 1.96, ρe = 1 g/cm3 and χ = 1 are used for improved estimation of sodium aerosol dynamics in Indian SFR containment with M0 = 4 g/m3 for severe accident scenarios.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments (실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정)

  • Ji, Jun-Ho;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2013
  • Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.

Aerosol Emission from Road by Livestock Transport Vehicle Movement (축산관련차량 이동에 따른 도로의 에어로졸 발생량 분석)

  • Seo, Il-Hwan;Lee, In-Bok;Hwang, Hyun-Seob;Bae, Yeon-Jeong;Bae, Seung-Jong;Moon, Oun-Kyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.137-147
    • /
    • 2013
  • Most of livestock houses are concentrated in certain area with mass rearing system resulting in rapid spread of infectious diseases such as HPAI (highly pathogenic avian influenza). The livestock-related vehicles which frequently travel between farms could be a major factor for disease spread by means of transmission of airborne aerosol including pathogens. This study was focused on the quantitative measurement of aerosol concentration by field experiment while vehicles were passing through the road. The TSP (total suspended particle) and PM10 (particle matter) were measured using air sampler with teflon filter installed downward the road with consideration of weather forecast and the direction of road. And aerosol spectrometer and video recorders were also used to measure the real-time distribution of aerosol concentration by its size. The results showed that PM2.5 was not considerable for transmission of airborne aerosol from the livestock-related vehicle. The mass generated from the road during the vehicle movement was measured and calculated to 241.4 ${\mu}g/m^3$ by means of the difference between TSP and PM2.5. The dispersion distance was predicted by 79.6 m from the trend curve.