• Title/Summary/Keyword: Aerosol Optical Depth

Search Result 101, Processing Time 0.024 seconds

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

A Study on the Variation of Aerosol Optical Depth according to Aerosol Types in Northeast Asia using Aeronet Sun/Sky Radiometer Data (AERONET 선포토미터 데이터를 이용한 동북아시아 지역 대기 에어로졸 종류별 광학적 농도 변화 특성 연구)

  • Noh, Youngmin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.668-676
    • /
    • 2018
  • This study has developed a technique to divide the aerosol optical depth of the entire aerosol (${\tau}_{total}$) into the dust optical depth (${\tau}_D$) and the pollution particle optical depth (${\tau}_P$) using the AERONET sun/sky radiometer data provided in Version 3. This method was applied to the analysis of AERONET data observed from 2006 to 2016 in Beijing, China, Seoul and Gosan, Korea and Osaka, Japan and the aerosol optical depth trends of different types of atmospheric aerosols in Northeast Asia were analyzed. The annual variation of ${\tau}_{total}$ showed a tendency to decrease except for Seoul where observation data were limited. However, ${\tau}_D$ tended to decrease when ${\tau}_{total}$ were separated as ${\tau}_D$ and ${\tau}_P$, but ${\tau}_P$ tended to increase except for Osaka. This is because the concentration of airborne aerosols, represented by Asian dust in Northeast Asia, is decreased in both mass concentration and optical concentration. However, even though the mass concentration of pollution particles generated by human activity tends to decrease, Which means that the optical concentration represented as aerosol optical depth is increasing in Northeast Asia.

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Atmospheric Aerosol Optical Properties in the Korean Peninsula

  • Oh, Sung-Nam;Sohn, Byung-Ju;Chung, Hyo-Sang;Park, Ki-Jun;Park, Sang-Soon;Hyun, Myung-Suk
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.423-423
    • /
    • 2003
  • The radiative properties of atmospheric aerosol are determined by the mass and chemical characteristics, and optical properties such as aerosol optical depth (AOD), ngstr m parameter ( $\alpha$) and single scattering albedo (SSA). In particular these aerosol optical properties also determine surface temperature perturbation that may give some information in understanding the regional atmospheric radiative forcing. For understanding the radiative forcing and regional surce of aerosol, this paper summarizes and compares the aerosol optical properties results from and compares the atmospheric aerosol optical properties results from two different experiments: Anmyeon 2000 and Jeju 2001. Korea Global Atmosphere Watch Observatory (KGAWO) at Anmyeon island and ACE-Asia super-site at Gosan Jeju island have measured the radiations and aerosols since the year of 2000. The sites are located in the mid-west and south of Korea peninsula where it is strongly affected by the Asian dust coming from China region in every spring. Aerosol optical properties over both sites were measured through the ground-based sun and sky radiometers were analyzed for understanding the radiation and climate properties. Number concentration and chemical components of aerosol were additionally analyzed for the source estimation in the transportation. The frequency distributions of aerosol optical depth are rather narrow with a modal vaiue of 0.38 at both sites. However, the distributions of show one peak (1.13) at Jeju but two peaks (0.63 and 1.13) at Anmyeon. In the cases of Anmyeon, one peak around 0.63 corresponds to relatively dust-free cases, and the second peak around 1.13 characterizes the situation when Asian dust is presented. The correlation between AOD and resulted high correlation on the wide range with high values of optical depth at Anmyeon, otherwise a narrow range of with moderate to low AOD at Jeju. In dust free condition SSA decrease with waveleneth while in the presence of Asian dust SSA either stays neutral or increases slightly with wavelength. The change of surface temperature shows the stronger positive correlations with aerosol optical depth increase at Anmyeon than Jeju. In the chemical properties the aerosol are related to high concentrations in inorganic matters, SO$^4$, NO$_3$, CA2+ in fine and coarse.

  • PDF

Monitoring of Climate Change of Northeast Asia and Background Atmosphere in Korea

  • Oh, Sung-Nam;Chung, Hyo-Sang;Choi, Jae-Cheon;Bang, So-Young;Hyun, Myung-Suk
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.232-235
    • /
    • 2003
  • In general, the parameters of climate change include aerosol chemical compounds, aerosol optical depth, greenhouse gases(carbon dioxide, CFCs, methane, nitrous oxide, tropospheric ozone), ozone distribution, precipitation acidity and chemical compounds, persistent organic pollutants and heavy metals, radioactivity, solar radiation including ultra-violet and standard meteorological parameters. Over the last ten years, the monitoring activities of Korea regarding to the climate change have been progressed within the WMO GAW and ACE-Asia IOP programs centered at the observation sites of Anmyeon and Jeju Gosan islands respectively. The Greenhouse gases were pointed out that standard air quality monitoring techniques are required to enhance data comparability and that data presentation formats need to be harmonized and easily understood. Especially, the impact of atmospheric aerosols on climate depends on their optical properties, which, in turn, are a function of aerosol size distribution and the spectral reflective indices. Aerosol optical depth and single scattering albedo in the visible are used as the two basic parameters in the atmospheric temperature variation studies. The former parameter is an indicator of the attenuation power of aerosols, while the latter represents the relative strength of scattering and absorption by aerosols. For aerosols with weak absorption, surface temperature decreases as the optical depth increases because of the domination of backscattering. For aerosols with strong absorption, however, warming could occur as the optical depth increases. The objective of the study is to characterize the means, variability, and trends of Greenhouse gases and aerosol properties on a regional basis using data from its baseline observatories in Korea peninsula. A further goal is to understand the factors that control radiative forcing of the greenhouse and aerosol.

  • PDF

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths (에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구)

  • Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

Development of Aerosol Retrieval Algorithm Over Ocean Using FY-1C/1D Data

  • Xiuqing, Hu;Naimeng, Lu;Hong, Qiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1255-1257
    • /
    • 2003
  • This study proposes a single-channel satellite remote sensing algorithm for retrieving aerosol optical thickness over global ocean using FY-1C/1D data. An efficient lookup table (LUT)method is adopted in this algorithm to generate apparent reflectance in channel 1 and channel 2 of FY-1C/1D over ocean. The algorithm scale the apparent reflectance in cloud-free conditions to aerosol optical thickness using a state-of-art radiative transfer model 6S with input of the relative spectral response of channel 1 and 2 of FY-1C/1D. Monthly mean composite maps of the aerosol optical thickness have been obtained from FY-1C/1D global area coverage data between 2001 and 2003. Aerosol optical thickness maps can show the major aerosol source which are located off the west coast of northern and southern Africa, Arabian Sea and India Ocean. These result is very similar to other satellite sensors such as AVHRR and MODIS in the location area of heavy aerosol optical thickness over global ocean. The algorithm have been used to FY-1D operational performance and it is the first operational aerosol remote sensing product in China.

  • PDF

Examining the Non-spherical Effect of Asian Dust Particle Onaerosol Optical Depth (황사의 비구형성이 에어러솔 광학적 두께 산출에 미치는 영향 연구)

  • Lee, Hyun-Ju;Kim, Sang-Woo;Yoon, Soon-Chang;Kang, Jung-Yoon
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.175-186
    • /
    • 2012
  • In this study, we investigate the effects of elliptical shape of Asian dust particles on the estimation of aerosol optical depth by implementing T-matrix method into WRF/Chem Dust Model. The phase function calculated by assuming elliptical particle shape near $110{\sim}160^{\circ}$ of scattering angle showed about 20 times larger than that calculated by assuming spherical particle shape. Significant difference of extinction efficiency was found with an increase of size parameter and aspect ratio. From the simulations of two Asian dust events occurred on 1 April 2007 and 16 March 2010, we found that the difference of extinction efficiency between elliptical and spherical particle shape was about 5~8%. The aerosol optical depth calculated by assuming elliptical particle shape with 1.6, 1.4 and 1.2 of aspect ratio was about $4.0{\pm}0.5%$, $2.0{\pm}0.2%$, and $1.0{\pm}0.1%$ larger than those estimated by assuming spherical particle shape.

An Algorithm to Determine Aerosol Extinction Below Cirrus Cloud from Mie-LIDAR Signals

  • Wang, Zhenzhu;Wu, Decheng;Liu, Dong;Zhou, Jun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.444-450
    • /
    • 2010
  • The traditional approach to inverting aerosol extinction makes use of the assumption of a constant LIDAR ratio in the entire Mie-LIDAR signal profile using the Fernald method. For the large uncertainty in the cloud optical depth caused by the assumed constant LIDAR ratio, an not negligible error of the retrieved aerosol extinction below the cloud will be caused in the backward integration of the Fernald method. A new algorithm to determine aerosol extinction below a cirrus cloud from Mie-LIDAR signals, based on a new cloud boundary detection method and a Mie-LIDAR signal modification method, combined with the backward integration of the Fernald method is developed. The result shows that the cloud boundary detection method is reliable, and the aerosol extinction below the cirrus cloud found by inverting from the modified signal is more efficacious than the one from the measured signal including the cloud-layer. The error due to modification is less than 10% taken in our present example.

UV Spectral Aerosol Optical Depth using Direct-Sun Irradiance measured with an UVMFR Instrument (자외선 영역의 파장별 직달일사량 자료를 이용한 에어로즐 광학깊이 분석)

  • 김정은;류성윤;김영준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.417-418
    • /
    • 2003
  • 2002년 10월과 11월에는 가을 추수 후 소각이 대기질에 미치는 영향을 조사하고자 광주과학기술원 내에서 에어로졸과 대기 복사 집중 측정 기간을 가졌다. 12시간 또는 일평균 자료만을 제공하는 에어로졸 화학적 특성의 측정과 달리 자외선 영역의 다파장 회전차폐판 복사계 (Ultraviolet Multi-filter Rotating Shadowband Radiometer)를 이용한 에어로졸 광학 깊이(aerosol optical depth)는 1분 간격의 직달 일사량 자료로부터 에어로졸 복사적 특성을 시간에 따른 변화를 볼 수 있다는 장점을 가진다. (중략)

  • PDF