Browse > Article
http://dx.doi.org/10.14191/Atmos.2012.22.2.175

Examining the Non-spherical Effect of Asian Dust Particle Onaerosol Optical Depth  

Lee, Hyun-Ju (School of Earth and Environmental Sciences, Seoul National University)
Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University)
Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University)
Kang, Jung-Yoon (Korea Institute of Atmospheric Prediction Systems)
Publication Information
Atmosphere / v.22, no.2, 2012 , pp. 175-186 More about this Journal
Abstract
In this study, we investigate the effects of elliptical shape of Asian dust particles on the estimation of aerosol optical depth by implementing T-matrix method into WRF/Chem Dust Model. The phase function calculated by assuming elliptical particle shape near $110{\sim}160^{\circ}$ of scattering angle showed about 20 times larger than that calculated by assuming spherical particle shape. Significant difference of extinction efficiency was found with an increase of size parameter and aspect ratio. From the simulations of two Asian dust events occurred on 1 April 2007 and 16 March 2010, we found that the difference of extinction efficiency between elliptical and spherical particle shape was about 5~8%. The aerosol optical depth calculated by assuming elliptical particle shape with 1.6, 1.4 and 1.2 of aspect ratio was about $4.0{\pm}0.5%$, $2.0{\pm}0.2%$, and $1.0{\pm}0.1%$ larger than those estimated by assuming spherical particle shape.
Keywords
non-spherical shape; Asian dust particle; aerosol optical depth; WRF/Chem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buseck, P. R., and M. Posfai, 1999: Air borne minerals related aerosol particles: Effection climate and the environment. Proc. Natl. Acad. Sci.USA., 96, 3372-3379.   DOI   ScienceOn
2 Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurement. J. Atmos. Sci., 59, 461-483.   DOI   ScienceOn
3 Claquin, T., M. Schulz, Y. Balkanski, and O. Boucher, 1998: Uncertainties in assessing radiative forcing by mineral dust. Tellus, Ser. B, 50, 491-505.   DOI   ScienceOn
4 Dubobik, O., B. N. Holben, T. lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I.Slutsker, 2002: Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locat ions. Geophys.Res. Lett., 29, 10, 10.29/2001GL014506.
5 Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaeri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistryaerosol model. J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721.   DOI
6 Gao, Y., and J. R. Anderson, 2001: Characteristics of Chinese aerosols determined by individual particle analysis. J. Geophys. Res., 106, 18,037-18,045.   DOI
7 Hess, M., P. Keopke, and I. Schult, 1998: Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Am. Met. Soc., 79, 831-844.   DOI   ScienceOn
8 Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007. In: Manning, M. et al. (Eds.), The Physical Science Basis. Cambridge University Press, New York.
9 Kang, J.-Y., S.-C. Yoon, Y. Shao, and S.-W. Kim, 2011: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J. Geophys. Res., 116, D09202, doi:10.1029/2010JD014649.   DOI
10 Koren, I., E. Ganor, and J. H. Joseph, 2001: On the relation between size and shape of desert dust aerosol. J. Geophys. Res., 106, 18,047-18,054.   DOI
11 Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: sensitivity to key variables. J. Geophys. Res., 103, 31637-31645.   DOI
12 Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Clim., 11(12), 3247-3267, doi :10.1175/1520-0332(1998)001<3247:CRTSDA>2.0.CO;2.   DOI   ScienceOn
13 Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf., 60, 3 pp., 309-324.   DOI   ScienceOn
14 Munoz, O., H. Volten, J. de Haan, W. Vassen, and J. W. Hovenier, 2001: Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633 nm. J. Geophys. Res., 106, 22,833-22,844.
15 Nousiainen, T., 2009: Optical modeling of mineral dust particles: A review. J. Quant. Spectrosc. Radiat.Transf., 110, 12610 1279, doi:10.1016/j.jqsrt.2009.03.002.
16 Okada, K., A. Kobayashi, Y. Iwasaka, H. Naruse, T. Tanaka, and O. Nemoto, 1987: Features of individual Asian dust-storm particles collected at Nagoya. J. Meteor. Soc. Japan., 65, 515-521.   DOI
17 Okada, K., J. Heintzenberg, K. Kai, and Y. Qin, 2001: Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett., 28, 3123-3126.   DOI   ScienceOn
18 Osborne, S. R., B. T. Johnson, J. M. Haywood, A. J. Baran, M. A. J. Harrison, and C. L. McCnnell, 2008: Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment. J. Geophys. Res., 113, D00C03, doi:10.1029/2007JD009551.   DOI
19 Shao, Y., 2004: Simplification of a dust emission scheme and comparison with data. J. Geophys. Res., 109, D10202, doi:10.1029/2003JD004372.   DOI
20 Reid, E. A., J. S. Reid, M. M. Meier, M. R. Dunlap, S. S. Cliff, A. Broumas, K. Perry, and H. Maring, 2003: Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res.,108, 8591, doi:10.1029/2002JD002935.   DOI
21 Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681-683.   DOI   ScienceOn
22 Stokes, G. G., 1852: On the composition and resolution of streams of polarized light from different sources. Trans.Cambridge Philos. Soc., 9, 399-423.
23 Tegen, I., A. A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419-422.   DOI   ScienceOn
24 Uno, I., and Coathors, 2004: Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model. J. Geophys. Res., 109, D19S24,doi:10.1029/2003JD004222.   DOI
25 Yoon , S.-C., S.-W. Kim, M.-H. Kim, A. Shimizu, and N. Sugimoto, 2008: Ground-based Mie-scattering lidar measurements of aerosol extinction profiles during ABC-EAREX 2005: Comparison of instruments and inversion algorithm. J. Meteor. Soc. Japan., 86, 377-396.   DOI   ScienceOn
26 Yue, X., H, Wang, H. Liao, and K. Fan, 2010: Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J. Geophys. Res., 115, D04210, doi:10.1029/2009JD012063.   DOI
27 Wang, J., X. Liu, S. A. Christopher, J. S. Reid, E. Reid, and H. Maring, 2003: The effect of non-sphericity on geostationary satellite retrievals of dust particles. Geophys. Res. Lett., 30. 24, 2293, doi:10.1029/2003GL018697.   DOI
28 Zhang, L., X. Cao, J. Bao, B. Zhou, J. Huang, J. Shi, and J. Bi, 2010: A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys., 10, 4283-4293, doi:10.5194/acp-10-4283-1020.   DOI
29 Zhao, C., X. Liu, L. R. Leung, B. Johnson, S. A. McFarlane, W. I. Gustafson Jr., J. D. Fast, and R. Easter, 2010: The spatial distribution of mineral dust and it shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmos, Chem, Phys, 10, 8821-8838, doi:10.5194/acp-1-8821-2010.   DOI