Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.444

An Algorithm to Determine Aerosol Extinction Below Cirrus Cloud from Mie-LIDAR Signals  

Wang, Zhenzhu (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
Wu, Decheng (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
Liu, Dong (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
Zhou, Jun (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 444-450 More about this Journal
Abstract
The traditional approach to inverting aerosol extinction makes use of the assumption of a constant LIDAR ratio in the entire Mie-LIDAR signal profile using the Fernald method. For the large uncertainty in the cloud optical depth caused by the assumed constant LIDAR ratio, an not negligible error of the retrieved aerosol extinction below the cloud will be caused in the backward integration of the Fernald method. A new algorithm to determine aerosol extinction below a cirrus cloud from Mie-LIDAR signals, based on a new cloud boundary detection method and a Mie-LIDAR signal modification method, combined with the backward integration of the Fernald method is developed. The result shows that the cloud boundary detection method is reliable, and the aerosol extinction below the cirrus cloud found by inverting from the modified signal is more efficacious than the one from the measured signal including the cloud-layer. The error due to modification is less than 10% taken in our present example.
Keywords
Mie-LIDAR signal; Cloud boundary detection; Aerosol extinction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Xie, J. Zhou, N. Sugimoto, and Z. Wang, “Aerosol observation with Raman LIDAR in Beijing, China,” J. Opt. Soc. Korea 14, 215-220 (2010).   과학기술학회마을   DOI   ScienceOn
2 S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for LIDAR determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488-1494 (1992).   DOI
3 K. Sassen and B. S. Cho, “Subvisual–thin cirrus LIDAR dataset for satellite verification and climatological research,” J. Appl. Meteor. 31, 1275-1285 (1992).   DOI
4 D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia, observed by LIDAR under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34, 117-133 (1994).   DOI   ScienceOn
5 S. A. Young, “Analysis of LIDAR backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019-7031 (1995).   DOI
6 J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, “Operational cloud boundary detection and analysis from micro pulse LIDAR data,” in Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Tucson, AZ, USA, 1998), pp. 119-122.
7 K. Sassen and Z. Wang, “The need for a universal cloud property algorithm for active remote sensors,” in Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (San Antonio, TX, USA, 1999), pp. 169-173.
8 Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteor. 40, 1665-1682 (2001).   DOI   ScienceOn
9 Z. Wang, D. Liu, J. Zhou, and Y. Wang, “Experimental determination of the calibration factor of polarization-Mie LIDAR,” Optical Review 16, 566-570 (2009).   DOI
10 J. Zhou, D. Liu, G. Yue, F. Qi, A. Fan, G. Shi, H. Cha, and D. Kim, “Vertical distribution and temporal variation of Asian dust observed over Hefei, China by using a LIDAR,” J. Korean Phys. Soc. 49, 320-326 (2006).   과학기술학회마을
11 D. J. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).   DOI
12 Z. Wang, R. Chi, B. Liu, and J. Zhou, “Depolarization properties of cirrus clouds from polarization LIDAR measurements over Hefei in spring,” Chinese Optics Letters 6, 235-237 (2008).   DOI
13 N. Sugimoto, A. Shimizu, and I. Matsui, “Study of dust transport using a network of continuously operated polarization LIDARs,” Water, Air, and Soil Pollution Focus 5, 145-157 (2005).   DOI
14 E. J. Welton, J. R. Campbell, J. D. Spinhirne, and V. S. Scott, “Global monitoring of 22 clouds and aerosols using a network of micro-pulse LIDAR systems,” Proc. Internat. Soc. Opt. Eng. 4153, 151-158 (2001).
15 D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne LIDAR for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).   DOI
16 F. G. Fernald, “Analysis of atmospheric LIDAR observation: some comments,” Appl. Opt. 23, 652-653 (1984).   DOI
17 J. D. Klett, “Stable analytical inversion solution for processing LIDAR returns,” Appl. Opt. 20, 211-220 (1981).   DOI
18 Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multiwavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmospheric Research 86, 76-87 (2007).   DOI   ScienceOn
19 W. Chen, C. Chiang, and J. Nee, “LIDAR ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470-6476 (2002).   DOI
20 J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, “LIDAR observation of Asian dust over Hefei, China, in spring 2000,” J. Geophys. Res. 107(D15), 4252-4259 (2002).   DOI