• 제목/요약/키워드: Aerodynamics characteristics

검색결과 186건 처리시간 0.03초

등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구 (A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion)

  • 제상언;정성기;곽상혁;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented. Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted th handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and provided good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations in the design period.

  • PDF

등속도로 하강중인 회전 낙하산의 공력특성에 관한 수치적 연구 (A NUMERICAL STUDY ON AERODYNAMIC CHARACTERISTICS OF A ROTATING PARACHUTE IN STEADY DESCENDING MOTION)

  • 제상언;정성기;곽상혁;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.52-56
    • /
    • 2006
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted to handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and produced good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations.

대형버스 바디모델의 후류특성 및 후미 스포일러 효과에 관한 해석적 고찰 (A Numerical Investigation on the Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.126-133
    • /
    • 2003
  • The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of the vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of rear-spoiler attached at rear end of bus body was investigated. The Wavier-Stokes equation is solved with SIMPLE method in general curvilinear coordinates system. RNG $k-\varepsilon$ turbulence model with the MARS scheme was used for the evaluating aerodynamic forces, velocity and pressure distribution. The results showed details of the three-dimensional wake flow in the immediate rear of bus body and the effect of rear-spoiler on the wake structure. A maximum of 14% reduction in drag coefficient was achieved for a model with a rear-spoiler.

Unsteady Aerodynamic Characteristics of an Accelerating or Decelerating Aerofoil

  • Lee, Y-K;Kim, H-D.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.347-352
    • /
    • 2004
  • The unsteady aerodynamic characteristics of an aerofoil gradually accelerating or decelerating at subsonic speeds are investigated through two-dimensional, unsteady, compressible Navier-Stokes simulations. An acceleration factor is defined to provide various acceleration or deceleration characters of the time-dependent flow over the aerofoil. The results show that an increase in the absolute value of the non-dimensional acceleration factor leads to a lesser change in the location and range of flow featues such as shockwave and boundary layer separation in a specific time range. Generally, the gradual speed-up and speed-down of the subsonic aerofoil results in different aerodynamic characteristics whose changes are more significant at angles of attack.

  • PDF

Winglet이 부착된 날개의 구조변형에 의한 공력 변화 (STRUCTURAL DEFORMATION EFFECT ON THE AERODYNAMICS OF A WING WITH WINGLETS)

  • 이영민;강영진;정성기;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.39-42
    • /
    • 2009
  • The aerodynamic characteristics of aircraft winglet with structural deformation was investigated using the static FSI(Fluid-Structure Interaction) system. The system, comprised of CAD, CFD, CSD, VSI, and grid regeneration modules, was constructed. In the process VSI, grid regeneration, and integration modules were developed to combine CSD and CFD modules. As a test model, KC-135A, the double winglet suggested by Whitcomb, was selected and its aerodynamic characteristics for the rigid and deformable models was calculated by applying the static FSI system. As a result, the lift and drag coefficients of test models were reduced to 11% and 1.3%, respectively.

  • PDF

익형 뒷전 형상이 날개 공력 특성에 미치는 영향 (STUDY ON THE EFFECTS OF AIRFOIL TRAILING EDGE SHAPE ON THE WING AERODYNAMICS)

  • 김왕현;류기명;김병수
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.75-79
    • /
    • 2014
  • In the paper, a study on the analysis of the effects of trailing edge thickness on the aerodynamic characteristics of an airfoil is described. In this research, modification of the formula representing NACA symmetric airfoil is studied to change the airfoil shape with different trailing edge thickness of user's choice. According to the result of aerodynamic characteristics, as the trailing edge thickness increases the maximum lift coefficient increases while the lift-to-drag ratio decreases. In this paper flow calculation results are demonstrated and the analysis on those results and findings on the effects of non-zero thickness of trailing edge are suggested.

자유날개 동체꺾임형 항공기의 조종성 해석 (Free-wing Tilt-body Aircraft Controllerability Analysis)

  • 박욱제
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics such as short take-off and landing capability, and reduced sensitivity to gust and center of gravity (CG) change. Due to the main wing separating from the fuselage, the high tiltable empennage, and the stub-wing strongly influencing from the propeller wake, the resulting vehicle aerodynamics and flight dynamics are quite different from those of a conventional fixed-wing aircraft. Using the governing flight dynamics model was studied previously, all of speed and body tilt angle is simulated to determine the flight envelope by a non-linear 3-DOF flight simulation analysis. Though flight performance and trimmability are studied, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

고영각 Yawed LEX-Delta 익에서 발생하는 와유동의 수치해석 (Computational Study of the Vortical Flow over a Yawed LEX-Delta Wing at a High-Angle of Attack)

  • 김태호;권용훈;김희동;손명환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2109-2114
    • /
    • 2003
  • The vortex flow characteristics of a yawed LEX-delta wing at a high-angle of attack are studied using a computational analysis. The objective of the present study is to investigate and visualize the effects of the yaw angle, the development and interaction of vortices, the relationship between the suction pressure distributions and the vortex flow characteristics. Computations are applied to the three dimensional, compressible, Navier-Stokes Equations. In computations, the yaw angle is varied between 0 and 20 degree at a high-angle of attack. Computational predictions are compared with the previous experimental results.

  • PDF

DUP 가 있는 위그선의 공력학 특성 및 고도 안정성 (Aerodynamic Characteristics and Static Height Stability of WIG Effect Vehicle with Direct Underside Pressurization)

  • 박경우;김진배;이주희
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.961-967
    • /
    • 2009
  • A 3-dimensional numerical investigation of a WIG effect vehicle with DUP (direct underside pressurization) is performed to predict aerodynamic characteristics and the static height stability. DUP can considerably reduce take-off speed and minimize the hump drag while the vehicle accelerates on the water to take off. The DUP of the model vehicle, Aircat, consists of a propeller in the middle of the fuselage and an air chamber under the fuselage. The air accelerated by the propeller comes into the camber through the channel in the middle of fuselage and augments lift by changing its dynamic pressure to static pressure dramatically. However, the air accelerated by a propeller produces excessive drag and reduces static height stability.

문단낭독 시 속삭임 발화와 정상 발화의 공기역학적 특성 (Aerodynamic Characteristics of Whispered and Normal Speech during Reading Paragraph Tasks)

  • 표화영
    • 말소리와 음성과학
    • /
    • 제6권3호
    • /
    • pp.57-62
    • /
    • 2014
  • The present study was performed to investigate and discuss the aerodynamic characteristics of whispered and normal speech during reading paragraph tasks. 39 normal females(18-23 yrs.) read 'Autumn' paragraph with whispered and normal phonation. Their readings were recorded and analyzed by 'Running Speech' in Phonatory Aerodynamic System(PAS) instrument. As results, during whispered speech, the total duration was longer and the numbers of inspiration were more frequently shown than normal speech. The Peak expiratory and inspiratory rate were higher in normal speech, but the expiratory and inspiratory volume were higher in whispered speech. By correlation analysis, both whispered and normal speech showed significantly high correlation between total duration and expiratory/inspiratory airflow duration; numbers of inspiration and inspiratory airflow duration; expiratory and inspiratory volume. These results show that whispered speech needs more respiratory effort but shows poorer aerodynamic efficacy during phonation than normal speech.