• 제목/요약/키워드: Aerodynamic Optimization

검색결과 224건 처리시간 0.028초

EDISON OPT 평면요소를 이용한 고 세장비 날개에 대한 선형, 비선형 비교연구 및 추가구조물 위치 최적화 (Study on High Aspect Ratio Wing and Optimization of Substructure Location by Using EDISON OPtimal Triangle membrane(Linear and Non-linear analysis) - Static)

  • 이다운;홍윤표;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.262-267
    • /
    • 2016
  • In this paper, to design Human Powered Aircraft(HPAC) with high aspect ratio wing which behave with large displacement under lift distribution causing a failure itself, then steel wire has been designed to prevent its failure. unit load method is used to calculate reaction force on wire and Optimal Triangle(OPT) membrane is employed to analyze its main wing spar with large displacement. EDISON CSD solver, linear static analysis and co-rotational nonlinear static anaysis both using OPT membrane produce behaviors of beam for each case of wire location about main wing spar, and aerodynamic coefficient also, by using aerodynamic analysis tool.

  • PDF

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화 (Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling)

  • 김영상;이나리;조창열;박찬우
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.229-237
    • /
    • 2008
  • 본 연구에서는 항공기 날개를 설계하기 위하여 공기역학과 구조해석을 통합한 다분야 설계최적화(MDO) 프레임웍을 구성하였다. 파라미터 모델링 기법을 사용하여 최적화 전 과정을 자동화하였다. 공력해석은 Fluent를 사용하였으며 이를 위한 격자는 CATIA의 파라미터 모델과 Gridgen을 사용하여 자동으로 생성되도록 하였다. 유한요소해석을 위한 격자는 MSC.Patran의 PCL 기능을 사용한 파라미터 방법으로 자동으로 생성되도록 하였다. 공력하중은 volume spline method를 사용하여 구조하중으로 변환시켰다. 최적화 방법은 전역해를 구하기 유리한 반응표면법을 사용하였다. 최적화 문제로 목적 함수는 날개의 무게의 최소화, 제약조건은 양항비와 날개의 변위로 정하였다. 그리고 종횡비, 테이퍼 비 및 후퇴각을 설계변수로 정의하였다. 최적화 시험 결과는 본 MDO 프레임웍이 성공적으로 구성되었음을 보여주었다.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

반응면 기법을 이용한 제트송풍기의 공력학적 수치최적설계 (Aerodynamic Design Optimization of an Jet Fan using the Response Sruface Method)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.635-638
    • /
    • 2002
  • In this study, three-dimensional imcompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, imcompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Sweep angles are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and finally the shape of impeller Is achieved from using a numerical optimization for the response surface which is obtained from CFD.

  • PDF

헬리콥터의 고속충격소음 감소를 위한 블레이드 평면형상 최적화 (BLADE PLANFORM OPTIMIZATION FOR HSI NOISE REDUCTION OF HELICOPTER)

  • 채상현;양충모;정신규;;;이관중
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.53-61
    • /
    • 2009
  • The objective of this research is to design blade planform to reduce high speed impulsive(HSI) noise from a non-lifting helicopter rotor using CFD method and optimization techniques. As for the aero-acoustic analysis, CFD technique for aerodynamic analysis and Kirchhoff's method for the acoustic analysis were used. As for the optimization method, Kriging-based genetic algorithm(GA) model as a high-fidelity optimization method was chosen. Design variables and constraints are determined for arbitrary blade planform. The result shows that the optimized blade planform with high swept-back and taper ratio can reduce HSI noise by suppressing generation of the strong shock wave on blade surface and propagation of the noise to the farfield flow region.

인공신경망 이론을 적용한 3단 축류압축기의 다분야 통합 최적설계 (Multidisciplinary Design Optimization of 3-Stage Axial Compressorusing Artificial Neural Net)

  • 홍상원;이세일;강형민;이동호;강영석;양수석
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.19-24
    • /
    • 2010
  • The demands for small, high performance and high loaded aircraft compressor are increased in the world. But the design requirements become increasingly complex to design these high technical engines, the requirement of the design optimization become increased. The optimal design result of several disciplines show different tendencies and nonlinear characteristics of the compressor design, the multidisciplinary design optimization method must be considered in compressor design. Therefore, the artificial Neural Net method is adapted to make the approximation model of 3-stage axial compressor design optimization for considering the nonlinear characteristic. At last, the optimal result of this study is compared to that of previous study.

설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계 (Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point)

  • 고우식;김광용;고성호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF