• Title/Summary/Keyword: Aerodynamic Noise

Search Result 367, Processing Time 0.024 seconds

The Effect of Accent Method in Treating Vocal Nodule Patients (성대결절 환자에서 액센트 치료법의 효과)

  • Kwon, Soon-Bok;Kim, Yong-Ju;Jo, Cheol-Woo;Jun, Kye-Rok;Lee, Byung-Joo;Wang, Soo-Geun
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.87-98
    • /
    • 2001
  • Vocal nodule is one of the representative chronic diseases of vocal folds, and it can be cured by surgical removal or voice therapy. The aim of this study is to evaluate the effect of the accent method, one of the popular effective voice therapy, in the patients with vocal nodule. Authors executed the accent method in 17 patients with vocal nodule who visited the Voice & Speech Therapy Clinic, Pusan National University Hospital analysed the voice before and after treatment using the local findings, acoustic analysis and aerodynamic analysis MPT. The voice was analysed with MDVP of CSL and MPT was checked using stop watch. The parameters included Fo, Jitter, Shimmer and noise to harmonic ratio(NHR) as acoustic analysis. The results were obtained as follows. In the evaluation by the local findings, it was improved to 77% in the patients of vocal nodule. Jitter and Shimmer were shown to be improved significantly. In particular, it was shown to be improved significantly in patients with vocal nodule. As the result of this study, the improvement of aerodynamic aspect was more statistically significant than that of acoustic parameters. When I generalized the above mentioned results, we suggest that it is a useful voice therapy which can be helpful to the improvement of voice, applying the accent method to the vocal nodule patients, and there are currently many methods to be used in the voice therapy, but it is thought which the accent method is the good treatment as the alternatives of keeping the continuous medical treatment.

  • PDF

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system (원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구)

  • Seo-Yoon, Ryu;Minseung, Jung;Younguk, Song;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.713-722
    • /
    • 2022
  • In this paper, the flow performance and aero-acoustic noise generated by the target centrifugal fan system were investigated numerically and experimentally. Also, the numerical method for Computational Aero-Acoustics were evaluated by comparing each method. To analyze the performance of the centrifugal fan experimentally, the acoustic power level was measured in the semi-anechoic chamber using microphones, and the active frequency range for the noise performance was identified and that frequency range was applied for Computational Aero-Acoustics (CAA) techniques as sampling frequency. Then, Navier-Stokes equation and the Ffowcs Williams&Hawking equations were used to analyze the flow and sound power numerically, respectively, and a virtual acoustic radiation plane was designed and used for the implementation of the sound field. The accuracy and numerical characteristics of the numerical methods were validated by comparing simulated acoustic power levels with acoustic power levels measured.

Quantitative Analysis of Voice Quality after Radiation Therapy for Stage T1a Glottic Carcinoma (T1a 병기 성문암의 방사선 치료 후 음성에 관한 연구)

  • Lee Joon-Kyoo;Chung Woong-Gi
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • Purpose : To evaluate the voices of irradiated patients with early glottic carcinoma and to compare these with the voices of healthy volunteers. Materials and Methods : The voice samples (sustained vowel) of seventeen male patients who had been irradiated for T1a glottic squamous carcinoma at least 1 year prior to the study were analyzed with objective voice analyzer (acoustic voice analysis, aerodynamic test, and videostroboscopic analysis) and compared with those of a normal group of twenty age- and sex-matched volunteers. Average fundamental frequency, jitter, shimmer, and noise-to-harmonic ratio were obtained for acoustic voice analysis. Maximal phonation time, mean flow rate, intensity, subglottic pressure, glottal resistance, glottal efficiency, and glottal power were obtained for aerodynamic test. Results : The irradiated group presented higher values of shimmer in acoustic voice analysis. There was no significant difference between two groups in other parameters. Conclusion : In this study all the objective voice parameters except shimmer were no4 significantly different between the irradiated group and the control group. These results suggest that the voice quality is minimally affected by radiation therapy for 71 a glottic carcinoma.

Validity of Voice Handicap Index and Voice Analysis following Laryngeal Microsurgery for Benign Vocal Cord Lesions (양성 성대 질환 환자의 후두 미세 수술 전후 음성 장애 지수 및 음성 분석의 유용성)

  • Park, Young-Hak;Lee, Jeong-Hak;Joo, Young-Hoon;Park, Sung-Sin;Bang, Choong-Il;Kim, Min-Sik;Cho, Seung-Ho
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • Background and Objectives : Voice disorders can cause problems in patients with benign vocal cord lesions emotionally, physically, economically and functionally. Neither subjective nor objective voice examinations can evaluate such factors adequately. The Voice Handicap Index (VHI) subjectively evaluates voice disorders in terms of physical, functional, emotional factors and measures the patient's perception of the impact of voice disorder. The purpose of this study is to evaluate the usefulness of VHI in the patients with benign vocal cord lesions. Materials and Method : The authors evaluated 37 patients who experienced laryngeal microsurgery for benign vocal cord lesions from september 2003 to August 2004. The VHI was used to measure the postoperative changes of the patient's perception and acoustic analysis and aerodynamic tests were also done. Statistical analysis was done using paired t-test and Pearson's correlation. Results : The VHI scores showed statistically significant reductions postoperatively. In acoustic analysis, jitter and shimmer had statistically significant reductions after surgery but noise-to-harmonics ratio did not. A statistically significant change in the average MFR and MPT perioperatively was found. The relationship between VHI and acoustic, aerodynamic analysis attained statistical significance. Conclusion : The VHI is a useful assessment tool to monitor the patient's self-perception of voice change after the surgery of benign vocal cord lesions. The VHI measurement, when combined with acoustic and aerodynamic analyses, will be helpful in comparing functional outcomes after voice surgery.

  • PDF

Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine (증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석)

  • Lee, Doo-Young;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Yook-Ryun;Kim, Doo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Performance Analysis of GPS Antenna for KSLV-I under Hot Temperature Environment (고온 환경에서 KSLV-I 발사체용 GPS 안테나의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don;Jung, Ho-Rac
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.157-164
    • /
    • 2007
  • For a GPS antenna to normally receive GPS satellite signals during full flight mission of a satellite launch vehicle, it should be installed on skin of the vehicle. The surface of a launch vehicle is drastically heated up due to aerodynamic heating effect during flight, so that the GPS antenna mounted on surface of the launch vehicle is directly exposed to extremely hot temperature environment. Hot temperature test specification of the GPS antenna, therefore, is severer than inner components. This paper describes that procedures and results of performance analysis of the GPS antenna for KSLV-I under hot temperature environment. The GPS antenna was not deformed physically and inner LNA(Low Noise Amplifier) operated normally without performance degradation.

  • PDF

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.