• 제목/요약/키워드: Aerodynamic Analysis

검색결과 1,354건 처리시간 0.026초

스키점프 비행 자세에 따른 공력 해석 (Aerodynamic Analysis on Ski Jump Flying Postures)

  • 손갑식;류민형;조진수
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.193-200
    • /
    • 2012
  • 스키점프 공력 특성에 관한 자료 획득을 목적으로 전산 수치 해석을 수행하였다. 한국인의 체형을 고려한 인체 모델링 기법을 적용하였으며 해석 결과의 검증을 위해 기존 풍동실험 연구 결과를 비교 분석하였다. 다양한 비행 조건에서 공력 계수를 분석하여 최대 양항비를 나타내는 비행 자세를 발견하였다. 본 연구가 대한민국 스키점프 선수들의 비행 자세 교정과 국내 스포츠 과학 발전에 기여할 수 있을 것으로 기대한다.

Experimental analysis of aerodynamic stability of stress-ribbon footbridges

  • Pirner, Miros;Fischer, Ondrej
    • Wind and Structures
    • /
    • 제2권2호
    • /
    • pp.95-104
    • /
    • 1999
  • The dynamic properties of one-span or multi-span reinforced concrete footbridges of catenary form (see e.g., Fig. 1) include the very low fundamental natural frequency, usually near the step-frequency of pedestrians, and the low damping of bending vibrations. The paper summarized the results of model as well as full-scale measurements with particular reference to the influence of torsional rigidity of the stress-ribbon on the magnitude of aerodynamic response, the results of measurements on footbridges of catenary form being completed by results obtained on footbridges of some other types. Additionally the influence of the local broadening of the bridge deck on the bridge response was tested. Starting from these results the criterion has been derived for the decision, whether the flutter analysis is necessary for the design of the footbridge.

형상함수를 이용한 열차 전두부 설계기법 연구 (Study on the Design Method for the Train Nose Shape Using the Configuration Function)

  • 구요천;노주현;윤수환;곽민호;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF

가수 유형별 음성의 공기역학적 분석 (Aerodynamic Analysis of Different Types of Singing Voices)

  • 노동우;황보명;백은아;정옥란
    • 음성과학
    • /
    • 제8권4호
    • /
    • pp.131-138
    • /
    • 2001
  • Sound pressure level, subglottic air pressure, vital capacity, adduction/abduction rate, and phonatory efficiency were measured in 19 opera singers, 17 Korean traditional 'Pansori' singers, and 20 non-singers; subjects' mean age was 25.9(SD=7.2) and the singers had been singing professionally for 5-10 years. One-way ANOVA and Scheff$\w'{e}$ post-hoc analysis were used to analyze aerodynamic data and to identify significant differences among groups. Sound pressure level, peak subglottic air pressure, and phonatory efficiency were found to be significantly different among three groups of the subjects. Differences in aerodynamic properties were discussed for their significance in diagnosis and treatment of voice disorders in professional singers.

  • PDF

Longitudinal static stability requirements for wing in ground effect vehicle

  • Yang, Wei;Yang, Zhigang;Collu, Maurizio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.259-269
    • /
    • 2015
  • The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구 (A Study on Design of Wind Turbine Blade and Aerodynamic Analysis)

  • 김정환;김범석;윤수한;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

격납용기내에서 분무형 나트륨화재 현상 해석 (Analysis of spray sodium fire phenomena in the containment vessel)

  • 조병렬;권선길;황성태
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.79-88
    • /
    • 1996
  • A hypothetical accident in the containment vessel of liquid metal reactor could cause a pressure, temperature rise, and a strong aerosol release. The computer codes relating to the modelization of these accident make it necessary to use various input parameter, among which is the dynamic shape factor of aerosols produced. Combustion experiments of sodium spray fire carried out in a closed vessel, which was vertical cylinder made of 1.2m in diameter and 1.8m hight with a volume of 1.7$m^3$. The results of theoretical analysis presented here was compared to data obtained from experiments. The experimental results were summarized as follows. 1) The aerodynamic diameter and geometric diameter of aerosols are decreasing with increasing of injection pressure and injection temperature of sodium 2) The dynamic shape factor of aerosol is proportional to the aerodynamic diameter for a given particle. 3) The correspondence between the aerodynamic diameter and geometric diameter can be as $D_{ae}=0.70 D_{ge}$. 4) Peak pressure rose with increase in pressure and temperature of injection sodium, being more sensitive to the injection pressure than the injection temperature.

  • PDF

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

CFDS 코드를 이용한 측추력 유도탄 공력해석 (Aerodynamic Analysis of Lateral Jet Controlled Missile Using CfDS Code)

  • 김재관;이정일;김종암;홍승규;이광섭;안창수
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.143-151
    • /
    • 2006
  • This paper investigates effects of reaction control jet on the aerodynamic performance of generic interceptor missile operating at supersonic flight condition. Parallelized CFDS code is used as a viscous flow solver. The generic interceptor missile configuration composed of a long and slender body and fixed tail fins. The behavior of normal force, axial force and pitching moment characteristics at altitude conditions corresponding to 10 km is studied according to the given control jet conditions, different angle of attacks based on the analysis of aerodynamic characteristics.

포탄의 꼬리날개가 기저항력에 미치는 영향에 대한 해석적 연구 (A Numerical Study on the Effect of the Tail Wing of a Projectile on the Base Drag)

  • 노성현;김종록;방재원
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.625-636
    • /
    • 2019
  • Recently, research on projectiles with wings for precision guidance is actively underway. In this study, we analyzed how the tail fins attached to the projectile affect the base drag. Aerodynamic analysis was performed with RANS(Reynolds Averaged Navier-Stokes) equations using FLUENT, a commercial CFD(Computational Fluid Dynamics) code. Through the aerodynamic analysis, the base drag characteristics of the projectile by parameters (number, length, thickness, position, shape of tail fin) were investigated. The results of this study are expected to be applicable to aerodynamic design of tail fins mounted on projectiles.