• 제목/요약/키워드: Aerial Robot

검색결과 44건 처리시간 0.031초

평면기구 메커니즘을 이용한 소형 6족 로봇 (A Milli-Scale Hexapedal Robot using Planar Linkages)

  • 김동선;정순필;정광필
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.97-102
    • /
    • 2018
  • A small and lightweight crawling robots have been actively studied thanks to their outstanding mobility and maneuverability. Those robots can navigate into more confined spaces that larger robots are unable to reach or enter such as debris and caves. In this paper, we propose a milli-scale hexapedal robot based on planar linkage design. To make this possible, two necessary conditions for successful crawling are satisfied: thrust force from the ground and aerial phase while running. These conditions are achieved through a newly developed leg design. The robot has a pair of legs and each leg has three feet. Those feet alternatively moves based on 1DOF planar linkage. This linkage is installed at each side of the robot and finally the robot shows the alternating gait and aerial phase during running. As a result, the robot runs with the crawling speed of 0.9 m/s.

20 kg급 틸트-덕트 수직이착륙 비행로봇의 설계 및 시험 (Design and Test of a 20 kg-class Tilt-duct VTOL Aerial Robot)

  • 장성호;조암;최성욱
    • 한국항공우주학회지
    • /
    • 제44권12호
    • /
    • pp.1095-1102
    • /
    • 2016
  • 본 논문에서는 20 kg급 틸트-덕트 수직이착륙 비행로봇 개발을 위한 비행체의 설계, 제작 및 시험 결과를 제시한다. 틸트-덕트 비행체는 추력발생을 위한 두 개의 메인프롭과 피치축 자세 제어를 위한 후방프롭으로 구성된다. 비행체의 추력과 자세 안정성 향상을 위해 호버와 조종성 연구에 중점을 두었다. 비행체 조종 성능 개선을 위해 메인프롭 링키지 변경에 의한 롤축 안정성 영향, 작동기 변경에 따른 자세제어 성능, 외풍에 대한 덕트 유, 무상태의 영향 및 조종면 영향을 확인할 수 있는 안전줄 시험이 수행되었다.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

항공 및 지상 동시 정찰이 가능한 융합형 정찰로봇 설계 (Design of Fusion Platform Robot for Ground and Aerial Reconnaissance)

  • 장동휘;고현준;김종형
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.718-723
    • /
    • 2015
  • This paper describes the conceptual platform design of a dual-capable robot for both driving on the ground and flying in the air. The dual-capable robot can move over all types of terrain for both ground and aerial reconnaissance. The main design problem of the robot is how to make a wheel for both driving and flying. The proposed key design concept is a hubless driving wheel that contains a propeller inside for flying in the air. The primary design parameters and initial specifications were confirmed through an examination of the conceptual design, and functional tests were then conducted using a real prototype robot for driving and flying modes. The test results show the feasibility of the proposed design concept.

틸트-덕트 수직이착륙 비행로봇의 동력계통 개발 (Development of Power System for the Tilt-duct VTOL Aerial Robot)

  • 장성호;조암;이치훈;최성욱
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 논문은 틸트-덕트 수직이착륙 비행로봇을 위한 동력계통의 설계, 개발 및 시험 결과를 기술한다. 본 연구에서는 R/C 모터보트에 적용되는 소형 수냉식 엔진을 이용하여 비행로봇의 탑재 및 비행체와 인터페이스에 대한 하드웨어 개발 사항을 기술하였다. 또한 지상시험과 안전줄 시험을 통해 비행체의 추력 성능을 측정하고 동력계통의 내구성 결과가 제시되었다.

CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇 (CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism)

  • 차은엽;정순필;정광필
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

공중-지상 로봇 협동 기술과 그 응용 및 연구 방향 (Air-Ground Cooperating Robots: Applications and Challenges)

  • 유승은;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

에어노드 기반 무선센서네트워크 구축을 위한 적응형 오르막경사법 기반의 자율무인비행로봇제어 (Autonomous Unmanned Flying Robot Control for Reconfigurable Airborne Wireless Sensor Networks Using Adaptive Gradient Climbing Algorithm)

  • 이덕진
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.97-107
    • /
    • 2011
  • This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.

태양전지 탑재 공중로봇 : GAORI (An Aerial Robot Equipped with Solar Cells : GAORI)

  • 손병락;박희진;공동욱;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.160-162
    • /
    • 2012
  • 최근 무인항공기 분야에서 전력원으로 신재생에너지를 사용하기위한 연구가 진행되고 있다. 무인항공기의 전력원은 무게에 매우 민감하기 때문에 상대적으로 가벼운 태양전지를 많이 사용하고 있다. 본 논문은 태양전지와 2차전지를 동력원으로 사용하는 틸트-로터형 태양전지 탑재 공중로봇(GAORI)의 플랫폼 및 소프트웨어 설계와 향후 연구방향에 대하여 설명한다.

  • PDF

감시용 동축로터 비행로봇의 개발 (Development of a Coaxial Rotor Flying Robot for Observation)

  • 강민성;신진옥;박상덕;황세희;조국;김덕후;지상기
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.