• Title/Summary/Keyword: Aerial Perspective

Search Result 29, Processing Time 0.027 seconds

CONSIDERATION OF THE RELATION BETWEEN DISTANCE AND CHANGE OF PANEL COLOR BASED ON AERIAL PERSPECTIVE

  • Horiuchi, Hitoshi;Kaneko, Satoru;Sato, Mie;Ozaki, Koichi;Kasuga, Masao
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.695-698
    • /
    • 2009
  • Three-dimensional (3D) shape recognition and distance recognition methods utilizing monocular camera systems have been required for field of virtual-reality, computer graphics, measurement technology and robot technology. There have been many studies regarding 3D shape and distance recognition based on geometric and optical information, and it is now possible to accurately measure the geometric information of an object at short range distances. However, these methods cannot currently be applied to long range objects. In the field of virtual-reality, all visual objects must be presented at widely varying ranges, even though some objects will be hazed over. In order to achieve distance recognition from a landscape image, we focused on the use of aerial perspective to simulate a type of depth perception and investigated the relationship between distance and color perception. The applicability of our proposed method was demonstrated in experimental results.

  • PDF

A Study on Aerial Perspective on Painterly Rendering (회화적 렌더링에서의 대기원근법의 표현에 관한 연구)

  • Jang, Jae-Ni;Ryoo, Seung-Taek;Seo, Sang-Hyun;Lee, Ho-Chang;Yoon, Kyung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1474-1486
    • /
    • 2010
  • In this paper, we propose an algorithm which represents the distance depiction technique of real painting that named "Aerial Perspective" in painterly rendering. It is a painting technique that depicts the attenuations of light in the atmosphere, and the scattering effect is changed by the distance, altitude and density of atmospheres. For the reflection of these natures, we use the depth information corresponding to an input image and user-defined parameters, so that user changes the effect level. We calculate the distance and altitude of every pixel with the depth information and parameters about shot information, and control the scattering effects by expression parameters. Additionally, we accentuate the occluding edges detected by the depth information to clarify the sense of distance between fore and back-ground. We apply our algorithm on various landscape scenes, and generate the distance-emphasized results compared to existing works.

Study on Chinese Medicine Tourism Linked Aerial Service (항공 서비스와 연계한 한방의료관광에 관한 고찰)

  • Kim, Soon-Seok;Oh, Pyeong-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.845-849
    • /
    • 2011
  • Until now, many researchers have studied and raised issues on medicine tourism. However, the studies for invigoration of medicine tourism from chinese medicine perspective have not been sufficient. The chinese medicine tourism is a new generated concept that combined health medical service of chinese treatment with health-related tour activity as a kind of health tourism. In this paper, we try to search developmental suggestions and propose alternatives for vitalization of chinese medicine tourism from aerial service view.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

A Study on the Ceneration of Simulated High-Resolution Satellite Images (고해상도 모의위성영상 제작에 관한 연구)

  • 윤영보;조우석;박종현;이종훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.327-336
    • /
    • 2002
  • Ever since high resolution satellites were launched, high-resolution satellite images have been utilized in many areas. This paper proposed methods of generating simulated satellite image using DEM(Digital Elevation Model) and digital image such as aerial photograph. There are two methods proposed in the paper: one is Direct-Indirect method and the other Indirect-Indirect, method. It is assumed that satellite attitude is not changing and perspective center is moving in the direction of flight while image is captured. The proposed methods were implemented with aerial photograph, DEM data, arbitrary orbit parameters and attitude parameters of high resolution satellite image under generation. Furthermore, for the stereo viewing, different orientation parameters and perspective center were tested for generating simulated satellite image. In addition, the quality and accuracy of the simulated satellite image generated by the proposed methods were analyzed.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

A Study on Designed Architectural and Landscaping Characteristics of Vincent Van Gogh's Landscape Paintings (빈센트 반 고흐 풍경화의 의도된 건축경관 특징 연구)

  • Chong, Geon-Chai
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.25 no.2
    • /
    • pp.43-50
    • /
    • 2023
  • This study is an architectural and landscaping analysis view to rural landscape paintings painted by Vincent van Gogh in the late 19th century. The purpose of this research is to discover the expressive techniques of Western art that Van Gogh's landscape paintings have, and to understand the characteristics of the architectural object in his landscape paintings from February 1888 to April 1889 in Arles, southern France. The method of this study is to analyze the landscape paintings of Van Gogh painted during 15 months in Arles. Among the total paintings in Arles, 47% of the paintings he made were landscapes. The following conclusions have three views. First, Vincent van Gogh was born into a Protestant family in the Netherlands and become an artist in his late twenties. While living in Arles, he painted prolific landscapes. Farming, farmers, and rural area related to normal living are the main subjects of paintings. It can be seen as showing the view that everyday life is sublime and should be included as a unitary value. Second, Gogh's rural landscape paintings were painted with linear and aerial perspective with other the expressive techniques, and plane painting structure that leads to two dimension. Third, from an architectural point of view, Van Gogh's paintings depicted simple vernacular architecture such as traditional rural house, mas, thatched houses, and mills in southern France. This means the normal value of the rural landscape through the eyes of the painter.

Automatic Building Extraction Using LIDAR and Aerial Image (LIDAR 데이터와 수치항공사진을 이용한 건물 자동추출)

  • Jeong, Jae-Wook;Jang, Hwi-Jeong;Kim, Yu-Seok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.59-67
    • /
    • 2005
  • Building information is primary source in many applications such as mapping, telecommunication, car navigation and virtual city modeling. While aerial CCD images which are captured by passive sensor(digital camera) provide horizontal positioning in high accuracy, it is far difficult to process them in automatic fashion due to their inherent properties such as perspective projection and occlusion. On the other hand, LIDAR system offers 3D information about each surface rapidly and accurately in the form of irregularly distributed point clouds. Contrary to the optical images, it is much difficult to obtain semantic information such as building boundary and object segmentation. Photogrammetry and LIDAR have their own major advantages and drawbacks for reconstructing earth surfaces. The purpose of this investigation is to automatically obtain spatial information of 3D buildings by fusing LIDAR data with aerial CCD image. The experimental results show that most of the complex buildings are efficiently extracted by the proposed method and signalize that fusing LIDAR data and aerial CCD image improves feasibility of the automatic detection and extraction of buildings in automatic fashion.

  • PDF

Adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles

  • Surzhik, Dmitry I.;Kuzichkin, Oleg R.;Vasilyev, Gleb S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.23-28
    • /
    • 2021
  • The article discusses the features of adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles operating in the conditions of "smart cities". The concept of cities of this type is defined, the historical path of formation, the current state and prospects for further development in the aspect of transition to "smart cities" of the third generation are shown. Cities of this type are aimed at providing more comfortable and safe living conditions for citizens and autonomous automated work of all components of the urban economy. The perspective of the development of urban mobile automated technical means of infocommunications is shown, one of the leading directions of which is the creation and active use of wireless self-organizing networks based on unmanned aerial vehicles. The advantages of using small-sized unmanned aerial vehicles for organizing networks of this type are considered, as well as the range of tasks to be solved in the conditions of modern "smart cities". It is shown that for the transition to self-organizing networks in the conditions of "smart cities" of the third generation, it is necessary to ensure the adaptation of various levels of OSI network models to dynamically changing operating conditions, which is especially important for the physical layer. To maintain an acceptable level of the value of the bit error probability when transmitting command and telemetry data, it is proposed to adaptively change the coding rate depending on the signal-to-noise ratio at the receiver input (or on the number of channel decoder errors), and when transmitting payload data, it is also proposed to adaptively change the coding rate together with the choice of modulation methods that differ in energy and spectral efficiency. As options for the practical implementation of these solutions, it is proposed to use an approach based on the principles of neuro-fuzzy control, for which examples of determining the boundaries of theoretically achievable efficiency are given.

Development of an electric powered, high speed, low-noise, small aerial target drone platform (전기 동력 고속 저소음 소형 대공 표적기 플랫폼 개발)

  • Taekyoon Kim;Youngjin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • Recently, from a global perspective, the use of small unmanned aerial vehicles in terrorism and warfare is increasing, and the need for anti-drone shooting training targeting small UAVs is increasing. However, in reality, there are many cases in Korea where anti-drone shooting training is restricted, due to complaints such as noise. In this paper, we describe the development and testing of an electric-powered direct strike type high-speed, low-noise small aerial target drone. To achieve the flight speed and endurance required for shooting training, target drone sizing was performed, and aerodynamic performance analysis was conducted using a CFD program. Based on the performance analysis, the motor propulsion system was selected and a variable pitch propeller system was designed, and performance tests were performed on a ground test rig. Finally, the target flight speed, flight time, and flight noise level were confirmed through flight tests.