• 제목/요약/키워드: Adverse Pressure Gradient

검색결과 56건 처리시간 0.023초

전산유체역학을 이용한 스텐트 설계 (Stent Design Using Computational Fluid Dynamics)

  • 김태동;;서태원
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1042-1048
    • /
    • 2005
  • Numerical investigation has been made on the stent design to minimize the neointimal hyperplasia. Computational fluid dynamics is applied to investigate the flow distributions in the immediate vicinity of the given idealized stent implanted in the blood vessel. Parametric study on the variations of the number of stouts, stent diameters, stent spacings and Reynolds numbers has been conducted using axi-symmetric Navier-Stokes equations. An initial difficulty in the study is to determine the optimal stent design to understand the flow physics of the flow disturbance induced by stent. The size of recirculation zone around stent is depend on the stent diameter, number of stent wire and Reynolds number but is insensitive to the stent wire spacing. It is also found that when the flow is in acceleration, the flow sees a more favorable pressure gradient, and the separation zones are smaller than the steady flow case. When the flow is in deceleration and the flow sees a more adverse pressure gradient so that the separation zones are larger.

Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser

  • Duprat, Cedric;Metais, Olivier;Laverne, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.346-352
    • /
    • 2009
  • The objective of the present work is to improve numerical predictions of unsteady turbulent swirling flows in the draft tubes of hydraulic power plants. We present Large Eddy Simulation (LES) results on a simplified draft tube consisting of a straight conical diffuser. The basis of LES is to solve the large scales of motion, which contain most of the energy, while the small scales are modeled. LES strategy is here preferred to the average equations strategies (RANS models) because it resolves directly the most energetic part of the turbulent flow. LES is now recognized as a powerful tool to simulate real applications in several engineering fields which are more and more frequently found. However, the cost of large-eddy simulations of wall bounded flows is still expensive. Bypass methods are investigated to perform high-Reynolds-number LES at a reasonable cost. In this study, computations at a Reynolds number about 2 $10^5$ are presented. This study presents the result of a new near-wall model for turbulent boundary layer taking into account the streamwise pressure gradient (adverse or favorable). Validations are made based on simple channel flow, without any pressure gradient and on the data base ERCOFTAC. The experiments carried out by Clausen et al. [1] reproduce the essential features of the complex flow and are used to develop and test closure models for such flows.

스마트 제어봉집합체의 낙하시간 평가 (Drop Time Evaluation for SMART Control Rod Assembly)

  • 김경련;장기종;박진석;이원재
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

Numerical Simulation of the Aeroacoustic Noise in the Separated Laminar Boundary Layer

  • Park, Hyo-Won;Young J. Moon;Lee, Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.280-287
    • /
    • 2003
  • The unsteady flow characteristics and the related noise of separated incompressible laminar boundary layer flows (Re$\sub$$\delta$/* = 614, 868, and 1,063) are numerically investigated. The characteristic lines of the wall pressure are examined to identify the primary noise source, related with the unsteady motion of the vortex at the reattachment point of the separation bubble. The generation and propagation of the vortex-induced noise in the separated laminar boundary layer are computed by the method of Computational Aero-Acoustics (CAA), and the effects of Reynolds number, Mach number and adverse pressure gradient strength are examined.

압축기 슈라우드 캐비티에 기인한 손실 해석 (Effects of shrouded cavity on loss in axial compressor cascade)

  • 이재석;김진희;김동범;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.427-433
    • /
    • 2004
  • The effects of flow interaction between mainstream and shrouded cavity leakage flow in an axial-flow compressor on aerodynamic losses are experimentally and numerically examined. A fraction of mainstream is Ingested in the downstream cavity and travelled in the shrouded cavity along the direction opposite to the mainstream. This leakage flow is caused by adverse pressure gradient along the blade passage. Then it is entrained through the upstream cavity near mid-pitch and interacts with the mainstream. As a result, the convection flow angle with respect to the blade chord is reduced i.e. underturning This underturned flow results in an increase in size of secondary flow formed near the suction side of the blade as well as its magnitude. Consequently, this causes pronounced increase in overall aerodynamic losses compared to the blading without shrouded cavity, leading to $9\%$ decrease in pressure rise through the single stage of the stators.

  • PDF

반구형 융기부를 이용한 벤투리에서의 캐비테이션 제어 (Control of cavitation in Venturi using hemispherical bump)

  • 황종빈;신이수;김주하
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we investigated how the performance of a Venturi changes when a hemispherical bump is applied to the divergent part of the Venturi tube and what causes the performance difference. The Venturi-tunnel experiment was conducted in the Reynolds number range of 0.2 × 105 - 1.2 × 105 and cavitation number range of 0.9 - 10. The bump was found to reduce the pressure loss coefficient and increase the discharge coefficient by shortening the cavitation length. The decrease in the cavitation length by the bump was explained by the strengthening of the re-entrant jet. The wake generated from the hemispherical bump seems to increase the adverse pressure gradient on the Venturi surface, thereby strengthening the re-entrant jet.

수학적 이론을 이용한 이차원 곡면 덕트의 최적형상 설계 (Optimal Shape Design of a 2-D Curved Duct Using a Mathematical Theory)

  • 임석현;최해천
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1325-1334
    • /
    • 1998
  • The objectives of the present study are to develop a systematic method rather than a conventional trial-and-error method for an optimal shape design using a mathematical theory, and to apply it to engineering problems. In the present study, an optimal condition for a minimum pressure loss in a two-dimensional curved duct flow is derived and then an optimal shape of the curved duct is designed from the optimal condition. In the design procedure, one needs to solve the adjoint Navier-Stokes equations which are derived from the Navier-Stokes equations and the cost function. Therefore, a computer code of solving both the Navier-Stokes and adjoint Navier-Stokes equations together with an automatic grid generation is developed. In a curved duct flow, flow separation occurs due to an adverse pressure gradient, resulting in an additional pressure loss. Optimal shapes of a curved duct are obtained at three different Reynolds numbers of 100, 300 and 800, respectively. In the optimally shaped curved ducts, the separation region does not exist or is significantly reduced, and thus the pressure loss along the curved duct is significantly reduced.

압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석 (Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios)

  • 권순덕;김성초;김정수;최종욱;김용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석 (Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor)

  • 송지한;황오식;박태춘;임병준;양수석;강영석
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이 (Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence)

  • 박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF