DOI QR코드

DOI QR Code

Control of cavitation in Venturi using hemispherical bump

반구형 융기부를 이용한 벤투리에서의 캐비테이션 제어

  • Jongbin Hwang (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Yisu Shin (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Jooha Kim (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.06.24
  • Accepted : 2023.07.27
  • Published : 2023.07.31

Abstract

In this study, we investigated how the performance of a Venturi changes when a hemispherical bump is applied to the divergent part of the Venturi tube and what causes the performance difference. The Venturi-tunnel experiment was conducted in the Reynolds number range of 0.2 × 105 - 1.2 × 105 and cavitation number range of 0.9 - 10. The bump was found to reduce the pressure loss coefficient and increase the discharge coefficient by shortening the cavitation length. The decrease in the cavitation length by the bump was explained by the strengthening of the re-entrant jet. The wake generated from the hemispherical bump seems to increase the adverse pressure gradient on the Venturi surface, thereby strengthening the re-entrant jet.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 집단연구지원사업(2021R1A4A1032023)을 통해 한국연구재단의 지원받아 수행되었으며, 이에 감사드립니다.

References

  1. Petkovsek, M. and Dular, M., 2013, "Simultaneous observation of cavitation structures and cavitation erosion," Wear., Vol.300(1-2), pp.55~64. https://doi.org/10.1016/j.wear.2013.01.106
  2. Dular, M., & Petkovsek, M. (2015). On the mechanisms of cavitation erosion-Coupling high speed videos to damage patterns. Experimental Thermal and Fluid Science, 68, 359-370. https://doi.org/10.1016/j.expthermflusci.2015.06.001
  3. Callenaere, M., Franc, J., Michel M. and Riondet M., 2001, "The cavitation instability induced by the development of a re-entrant jet," J. Fluid Mech., Vol. 444, pp.223~256. https://doi.org/10.1017/S0022112001005420
  4. Stanley, C., Barber, T. and Rosengarten, G., 2014. "Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice," Int. J. Heat Fluid Flow., Vol.50, pp.169~176. https://doi.org/10.1016/j.ijheatfluidflow.2014.07.004
  5. Pelz, P. F., Keil, T. and Gross, T. F., 2017, "The transition from sheet to cloud cavitation," J. Fluid Mech., Vol.817, pp.439~454. https://doi.org/10.1017/jfm.2017.75
  6. Simpson, A. and Ranade, V. V., 2019, "Modeling hydrodynamic cavitation in venturi: Influence of venturi configuration on inception and extent of cavitation," AIChE. J., Vol.65(1), pp.421~433. https://doi.org/10.1002/aic.16411
  7. Li, M., Bussonniere, A., Bronson, M., Xu, Z. and Liu, Q., 2019, "Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles," Miner. Eng., Vol.132, pp.268~274. https://doi.org/10.1016/j.mineng.2018.11.001
  8. Kadivar, E., Timoshevskiy, M. V., Pervunin, K. S. and el Moctar, O., 2020, "Cavitation control using cylindrical cavitating-bubble generators (CCGS): Experiments on a benchmark CAV2003 hydrofoil," Int. J. Multiph. Flow., Vol.125, pp.103186.
  9. Kawanami, Y., Kato, H., Yamaguchi, H., Tanimura, M. and Tagaya, Y., 1997, "Mechanism and control of cloud cavitation," J. Fluids Eng., Vol.119(4), pp.788~794. https://doi.org/10.1115/1.2819499
  10. Coutier-Delgosha, O., Devillers, J. F., Leriche, M. and Pichon, T., 2005, "Effect of wall roughness on the dynamics of unsteady cavitation," J. Fluids Eng., Vol.127(4), pp.726~733. https://doi.org/10.1115/1.1949637
  11. Li, Y., Chen, H., Wang, J. and Chen, D., 2010, "Effect of grooves on cavitation around the body of revolution," J. Fluids Eng., Vol.132(1).
  12. Arndt, R. E. and Ippen, A. T., 1968, "Rough surface effects on cavitation inception," J. Basic Eng., Vol.90(2), pp.249~261. https://doi.org/10.1115/1.3605086
  13. Stutz, B., 2003, "Influence of roughness on the two-phase flow structure of sheet cavitation," J. Fluids Eng., Vol.125(4), pp652~659. https://doi.org/10.1115/1.1596240
  14. Danlos, A., Ravelet, F., Coutier-Delgosha, O. and Bakir, F., 2014, "Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent-divergent nozzle," Int. J. Heat Fluid Flow., Vol.47, pp.9~20. https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001
  15. Bae, H. W., Lee, S. M., Song, M. S. and Sung, J. Y., 2019, "Flow visualizations and analysis on characteristics of bubbly flows exhausted from a venturi-type bubble generator with an air vent," Journal of the Korean Society of Visualization, Vol.17(1), pp.60~68. https://doi.org/10.5407/JKSV.2019.17.1.060
  16. Choi, C. H., Choi, S. W. and Song, S. M., 2017, "Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow," Journal of the Korean Society of Visualization, Vol.15(1), pp.11~18. https://doi.org/10.5407/jksv.2017.15.1.011
  17. Kim, G. R., Choi, S. W., Kim, Y. K. and Kim, K. C., 2012, "Measurement of Bubble Diameter and Rising Velocity in a Cylindrical Tank using an Optical Fiber Probe and a High Speed Visualization Technique," Journal of the Korean Society of Visualization, Vol.10(2), pp.14~19. https://doi.org/10.5407/JKSV.2012.10.2.014
  18. Kim, S. M., Jeong, W. T. and Kim, K. C., 2010, "Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank," Journal of the Korean Society of Visualization, Vol.8(3), pp.41~48. https://doi.org/10.5407/JKSV.2010.8.3.041
  19. Yi, J. J., Kim, M. J., Paik, B. G. and Kim, K. C., 2022, "A study on the shape of supercavitation center line change according to the gravity and angle of attack effect," Journal of the Korean Society of Visualization, Vol.20(1), pp.18~28.
  20. Park, S. C., Kim, D. Y., Choi, S. H., Lee, C. H., Lim, Y. H., Lee, C. Y., Lee, Y. W. and Yu, D. I., 2023, "Hydrodynamic effects of heater lengths on pool boiling critical heat flux," Journal of the Korean Society of Visualization, Vol.21(1), pp.67~73.
  21. Moon, E. S. and Kim, D. G., 2010, "Interaction between a rising toroidal bubble and a free surface," Journal of the Korean Society of Visualization, Vol.8(3), pp.41~48. https://doi.org/10.5407/JKSV.2010.8.3.041
  22. Zuo, Z., Zhang, H., Ren, Z., Chen, H. and Liu, S., 2022, "Thermodynamic effects at Venturi cavitation in different liquids," Phys. Fluids, Vol.34(8), pp.083310.
  23. Zhang, H., Zuo, Z., Morch, K. A. and Liu, S., 2019, "Thermodynamic effects on Venturi cavitation characteristics," Phys. Fluids, Vol.31(9), pp.097107.
  24. Cooper, J. R. and Dooley, R. B., 2007, "Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam," International Association for Properties of Water and Steam, Lucerne, Switzerland, 2007.
  25. Rudolf, P., Hudec, M., Griger, M. and Stefan, D., 2014, "Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations," In. EPJ. Web of conferences., Vol.67, pp.02101, EDP Sciences.
  26. Bermejo, D., Escaler, X. and Ruiz-Mansilla, R., 2021, "Experimental investigation of a cavitating Venturi and its application to flow metering," Flow Meas. Instrum., Vol.78, pp.101868.
  27. International Organization for Standardization, 2003, "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full: Mesure de Debit Des Fluides Au Moyen D'apparils Deprimogenes. Inseres Dans Des Conduites en Charge de Section Ciculaire. General Principles and Requirements," International Organization for Standardization.
  28. Kadivar, E., Timoshevskiy, M. V., Pervunin, K. S. and el Moctar, O., 2020, "Cavitation control using cylindrical cavitating-bubble generators (CCGs): Experiments on a benchmark CAV2003 hydrofoil," Int. J. Multiph. Flow., Vol.125, pp.103186.
  29. Zhu, J., Wang, S. and Zhang, X., 2020, "Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube," Phys. Fluids, Vol.32(1), pp.012105.