• Title/Summary/Keyword: Advection heat

Search Result 60, Processing Time 0.025 seconds

Evidences of Intermittent Wind-Induced Flow in the Yellow Sea obtained from AVHRR SST Data

  • Seung, Young Ho;Yoon, Jong-Hyuk;Lim, Eun-Pyo
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.395-401
    • /
    • 2012
  • Ten-year AVHRR sea surface temperature data obtained in the Yellow Sea are put into EOF analyses. Temperature variation is predominated by the first mode which is associated with the seasonal fluctuation of temperature with annual range decreasing with the bottom depth. Since such a strong annual signal may mask the upwind or downwind flows occurring intermittently during the winter, only the data obtained during this season are put into EOF analyses. Every winter shows similar results. The first mode, explaining more than 90% of total variance, appears to be a part of the seasonal variation of temperature mentioned above. In the second mode, the time coefficient is well correlated with northerly winds to which the responses of the trough and shallow coastal areas are opposite to each other. A simple theoretical consideration suggests the following physical explanation: The northerly wind stress anomaly creates an upwind (downwind) flow over the trough (coastal) areas, which then induces a temperature increase (decrease) by advection of heat, and vice versa for the southerly wind stress anomaly. Hence, this paper provides further evidence of the intermittent upwind or downwind flows occurring in the Yellow Sea every winter.

Inversion Phenomena of Temperature in the Yellow Sea (한국 서해의 수온역전 현상)

  • Kim, Hui-Jun;Yun, Hong-Ju;Yang, Seong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 1982
  • Temperature inversions are investigated by using the oceanographic data obtained in the Yellow Sea from 1965 to 1979. The temperature inversions are found in every depth in almost all areas of the Yellow Sea. While in summer, they frequently occur below thermocline in the west region of the Jeju Island. Such phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the surface and a southward advection of cold water, and those in summer result from the process of mixing between the Yellow Sea Warm Current and the Yellow Sea Bottom Cold Water.

  • PDF

Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models (기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향)

  • Choi, A-Ra;Park, Young-Gyu;Choi, Hui Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

Long-term pattern changes of sea surface temperature during summer and winter due to climate change in the Korea Waters

  • In-Seong Han;Joon-Soo Lee;Hae-Kun Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.639-648
    • /
    • 2023
  • The sea surface temperature (SST) and ocean heat content in the Korea Waters are gradually increased. Especially the increasing trend of annual mean SST in the Korea Water is higher about 2.6 times than the global mean during past 55 years (1968-2022). Before 2010s, the increasing trend of SST was led by winter season in the Korea Waters. However, this pattern was clearly changed after 2010s. The increasing trend of SST during summer is higher about 3.9 times than during winter after 2010s. We examine the long-term variations of several ocean and climate factors to understand the reasons for the long-term pattern changes of SST between summer and winter in recent. Tsushima warm current was significantly strengthened in summer compare to winter during past 33 years (1986-2018). The long-term patterns of Siberian High and East Asian Winter Monsoon were definitely changed before and after early- or mid-2000s. The intensities of those two climate factors was changed to the increasing trend or weakened decreasing trend from the distinctive decreasing trend. In addition, the extreme weather condition like the heatwave days and cold spell days in the Korea significantly increased since mid- or late-2000s. From these results, we can consider that the occurrences of frequent and intensified marine heatwaves during summer and marine cold spells during winter in the Korea Waters might be related with the long-term pattern change of SST, which should be caused by the long-term change of climate factors and advection heat, in a few decade.

Optimum Design of Outfall System by Analyzing Mixing Characteristics of Heat and Brine Discharge at Near Field Region (온배수 및 염배수의 근역혼합특성 분석을 통한 방류시스템의 최적설계)

  • Nam, Ki-Dae;Lee, Joong-Woo;Kim, Kang-Min;Kim, Ki-Dam;Kim, Pill-Sung
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.637-643
    • /
    • 2008
  • When planning outfall system, the first target cif design is to maximize initial dilution of discharge effluent. To achieve the target effectively, the characteristics of mixing phenomenon between ambient and discharged water should be analyzed. Especially the analysis at the Near-Field-Region(NFR) as initial dilution zone should be preceded. Usually, the initial behavior of effluent through outfall system is rising toward the surface due to mixing with ambient water for heat discharge and sinking toward the bottom due to the difference of density for brine discharge. After mixed with eddies accompanied by the ambient water, the plumes are showing the same density and internal current pattern by advection and diffusion. Until recently, lots of studies are being carried out for the optimum design of outfall system. but it is difficult to find any studies of heat and brine discharge at the same time. Therefore, this study is hoped to provide some basic data for optimum design of outfall system.

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

Inferring Regional Scale Surface Heat Flux around FK KoFlux Site: From One Point Tower Measurement to MM5 Mesoscale Model (FK KoFlux 관측지에서의 지역 규모 열 플럭스의 추정 : 타워 관측에서 MM5 중규모 모형까지)

  • Jinkyu Hong;Hee Choon Lee;Joon Kim;Baekjo Kim;Chonho Cho;Seongju Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.138-149
    • /
    • 2003
  • Korean regional network of tower flux sites, KoFlux, has been initiated to better understand $CO_2$, water and energy exchange between ecosystems and the atmosphere, and to contribute to regional, continental, and global observation networks such as FLUXNET and CEOP. Due to heterogeneous surface characteristics, most of KoFlux towers are located in non-ideal sites. In order to quantify carbon and energy exchange and to scale them up from plot scales to a region scale, applications of various methods combining measurement and modeling are needed. In an attempt to infer regional-scale flux, four methods (i.e., tower flux, convective boundary layer (CBL) budget method, MM5 mesoscale model, and NCAR/NCEP reanalysis data) were employed to estimate sensible heat flux representing different surface areas. Our preliminary results showed that (1) sensible heat flux from the tower in Haenam farmland revealed heterogeneous surface characteristics of the site; (2) sensible heat flux from CBL method was sensitive to the estimation of advection; and (3) MM5 mesoscale model produced regional fluxes that were comparable to tower fluxes. In view of the spatial heterogeneity of the site and inherent differences in spatial scale between the methods, however, the spatial representativeness of tower flux need to be quantified based on footprint climatology, geographic information system, and the patch scale analysis of satellite images of the study site.

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

Heat Balance Characteristics and Water Use Efficiency of Soybean Community (콩군낙(群落)의 열수지특성(熱收支特性)과 건물(乾物)로의 물이용효율(利用效率))

  • Lee, Yang-Soo;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean "Paldalkong" was sown with the space of $47{\times}10cm$ at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with recorded 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air. The linear relationship was obtained between daily or daytime net radiation and evapotranspiration. The evapotranspiration calculated by Bowen ratio-energy balance method was about 150 percent of class A pan evaporation during the growing season. The total solar radiation from June 20 to August 27 was $1043MJm^{-2}$. The 85 percent of the total shortwave radiation was used for evaporative heat. The dry matter production within the period was $836gm^{-2}$ and the water use efficiency was $2.31gDM\;kg^{-1}\;H_2O$.

  • PDF

Measurements of Wet Canopy Evaporation in Forests: A Review (산림에서의 젖은 군락 증발 관측: 고찰)

  • Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.56-68
    • /
    • 2011
  • Wet canopy evaporation ($E_{WC}$) has been recognized as a significant component of total evapotranspiration, especially in forests and therefore it is critical to accurately assess $E_{WC}$ to understand forest hydrological cycle. In this review, I focused on the measurement methods and evaluating the magnitudes of $E_{WC}$ at diverse forest types (e.g., deciduous, coniferous, mixed, and rain forests). I also present the general issues to be considered for $E_{WC}$ measurements. The commonly used measurement methods for $E_{WC}$ include the water balance, energy balance, and the Penman-Monteith (PM) methods. The magnitudes of $E_{WC}$ ranged from 5 to 54% of precipitation based on the literature review, showing a large variation even for a similar forest type possibly related to canopy structure, rainfall intensity, and other meteorological conditions. Therefore, it is difficult to draw a general conclusion on the contribution of $E_{WC}$ to evapotranspiration from a particular forest type. Errors can arise from the measurements of precipitation (due to varying wind effect) and throughfall (due to spatial variability caused by canopy structure) for water balance method, the measurements of sensible heat flux and heat storage for energy balance method, and the estimation of aerodynamic conductance and unaccounted sensible heat advection for the PM method. For a reliable estimation of $E_{WC}$, the combination of ecohydrological and micrometeorological methods is recommended.