• Title/Summary/Keyword: Advanced television systems committee

Search Result 70, Processing Time 0.024 seconds

Protection Ratio between ATSC Digital Broadcasting and WiBro Systems (ATSC 디지털 방송시스템과 WiBro 시스템 간 보호비 도출 연구)

  • Lee, Hui-Soo;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.61-65
    • /
    • 2009
  • It is crucial to derive a protection ratio between two communication systems before deploying a new communication systems in the vicinity of frequencies occupied by the existing communication systems. In this paper, computer simulation based protection ratio estimating scheme between ASTC (Advanced Television Systems Committee) digital broadcasting systems and WiBro (Wireless Broadband Internet) systems is proposed. The proposed scheme can be effectively exploited when a new communication services are deployed in the surplus frequency band after the expiration of the analog television broadcasting scheduled in 2012 in Korea.

The Design and Implementation of TV Tuner for the Digital Terrestrial Broadcasting (지상파 디지털 방송용 TV 튜너 설계 및 구현)

  • 정영준;김재영;최재익;박재홍
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.302-312
    • /
    • 2000
  • Digital TV tuner for 8-VSB modulation was developed with satisfying the requirements of ATSC. Double frequency conversion and active tracking filter was used in order to suppress IF beat and image band, which results in reducing the interference between adjacent channels and multi-channels. The implemented digital TV tuner has excellent performance such as the wide dynamic range, good flatness in passing band, and low phase noise. The developed tuner is available to handle the digital and analogue television signal at the same time.

  • PDF

Interference Cancellation On-Channel Regenerative Repeater Laboratory Test for ATSC Terrestrial Broadcasting (ATSC 지상파 방송을 위한 간섭제거 동일 채널 재생 중계기 성능평가)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • This paper presents and analyzes laboratory test results of Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) to broadcast digital television signals in the Advanced Television Systems Committee(ATSC) transmission systems using single frequency networks(SFN). IC-DOCR laboratory test is classified to receiver test, transmitter test, and feedback interference cancellation test. The receiver part includes random noise, single echo, multi-path ensembles, and adjacent channel interference test. The transmitter part includes out-of channel emission, equality of transmitting signal, and phase noise test. By the laboratory test, the receiver part of the IC-DOCR eliminates 28dB of feedback signal higher than the received signal and has 17.8dB at TOV(Threshold Of Visibility) under random noise environment. Also, the transmitter part satisfies the specification of US FCC(Federal Communications Commission) as well as maintains good output signal quality for guaranteeing more than SNR 30dB.

Interference Cancellation On-Channel Regenerative Repeater for the Single Frequency Network of ATSC Terrestrial Broadcasting (ATSC 지상파 방송의 단일주파수 망 구성을 위한 간섭제거 동일 채널 재생 중계기)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.295-302
    • /
    • 2011
  • In this paper we consider technological requirements to broadcast digital television signals using single frequency networks(SFN) in the Advanced Television Systems Committee(ATSC) transmission systems and propose Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) thar overcomes the limitation of EDOCR(Equalization Digital On Channel Repeater) proposed by ETRI. The proposed IC-DOCR maintains the benefits of EDOCR that have good output signal quality removing multi-path, additive white Gaussian noise(AWGN). In additional, since the Interference Cancellation algorithm using the 8-VSB symbol demodulation of received signal removes the Interference of feedback signal, IC-DOCR improve the weakness of EDOCR that have low isolation between receive and transmit antenna so that can overcome the limitation of output signal power. we did analysis and verification of the proposed system performance using computational simulation.

ATSC Terrestrial Digital Television Broadcasting Using Single Frequency Networks

  • Lee, Yong-Tae;Park, Sung-Ik;Kim, Seung-Won;Ahn, Chie-Teuk;Seo, Jong-Soo
    • ETRI Journal
    • /
    • v.26 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • In this paper, we propose an efficient method to broadcast digital television signals using single frequency networks (SFNs) within the Advanced Television Systems Committee (ATSC) transmission systems. In implementing the SFNs of an 8-vestigial side band (8-VSB) Digital Television (DTV) system, the ambiguity problem of the trellis coder is unavoidable in a conventional ATSC transmission system. We propose a memory initialization of the trellis coder to resolve this ambiguity problem. Since the proposed scheme to synchronize multiple transmitters minimizes the changes from the conventional ATSC system, the hardware complexity for these changes is very low. Our simulation results show that the proposed scheme makes a less than 0.1 dB degradation at the threshold of visibility with a bit error rate of $3{\times}10^{-6}$ in the additive white Gaussian noise (AWGN) channel. It is possible to reduce the performance degradation by increasing the initialization period of the proposed scheme.

  • PDF

The Broadband Auto Frequency Channel Selection of the Digital TV Tuner using Frequency Mapping Function (주파수 매핑 함수를 이용한 광대역 주파수 자동 채널 선택용 디지털 TV 튜너)

  • 정영준;김재영;최재익;박재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.613-623
    • /
    • 2000
  • Digital TV tuner for 8-VSB modulation was developed with satisfying the requirements of ATSC. The double frequency conversion and the active tracking filter in the front-end were used to reduce interference of the adjacent channels and multi-channels, which suppress If beat and image band. However, it was impossible to get frequency mapping between tracking filter and first VCO(Voltage Controlled Oscillator) in the double conversion digital TV tuner differing from conventional NTSC tuner. This paper, therefore, suggests the available structure and a new method for automatic frequency selection by obtaining the mapping of frequency characteristic over tracking voltage and the combined hardware which compose of Micro-controller, EEPROM, D/A(Digital-to-Analog Converter), OP amp and switch driver to solve above problems.

  • PDF

Equalization Digital On-Channel Repeater Part 2 : Field Test Results (등화형 디지털 동일 채널 중계기 Part 2 : 필드 테스트 결과)

  • Park Sung Ik;Lee Yong-Tae;Eum Homin;Seo Jae Hyun;Kim Heung Mook;Kim Seung Won;Lee Soo-In
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.221-237
    • /
    • 2005
  • This paper presents and analyzes field test results of Equalization Digital On-Channel Repeater (EDOCR) using ATSC(Advanced Television Systems Committee) terrestrial digital TV broadcasting system. In the field test, according to EDOCR On/Off, types of antennas and receivers we measured reception possibility, C/N(Carrier to Noise Ratio), reception power, noise and input margin at each test point. By the field test results, the reception rate of the receiver manufactured in 2004 was $33\%$ when EDOCR is off and directional antenna is used. However, the reception rate was $100\%$ when EDOCR is on. In addition, the noise margin, which determines reception quality was increased at least 6 dB, so that it is capable of constructing SFN(Single Frequency Network) using the EDOCR.

Distributed Translator Part 3: Field Test Results (분산 중계기 Part 3: 필드 테스트 결과)

  • Park, Sung-Ik;Seo, Jae-Hyun;Eum, Ho-Min;Lee, Yong-Hoon;Kim, Heung-Mook
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.40-51
    • /
    • 2010
  • This paper presents and analyzes field test results of distributed translator (DTxR) for distributed frequency network (DFN) in the ATSC (Advanced Television Systems Committee) terrestrial digital TV broadcasting system. In the field test, according to types of antennas and receivers in areas where are overlapped by two DTxRs' coverage, we measured reception power, noise margin reception possibility, and ease of reception at each test point. By the field test results, when two DTxRs are on, reception power and noise margin are increased than when one DTxR is on. However, reception rate and ease of reception are similar or increased according to types of receivers.

Distributed Translator Part 1: Distributed Translator Technology (분산 중계기 Part 1: 분산 중계 기술)

  • Kim, Heung-Mook;Park, Sung-Ik;Eum, Ho-Min;Seo, Jae-Hyun;Lee, Yong-Tae;Lim, Hyoung-Soo;Lee, Soo-In;Lee, Hyuck-Jae
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.14-28
    • /
    • 2010
  • This paper considers technological requirements to broadcast digital television signals using distributed frequency network (DFN) in the advanced television systems committee (ATSC) transmission system and proposes distributed translator (DTxR) to meet such requirements. In the DFN, DTxR uses different frequency from main transmitter, but same among DTxRs. In addition, this paper introduces digital signal processing (DSP) techniques, which consist of demodulation, equalization, transmitter identification (TxID) generation and insertion, and modulation, to implement DTxR.

Mathematical Modeling of VSB-Based Digital Television Systems

  • Kim, Hyoung-Nam;Lee, Yong-Tae;Kim, Seung-Won
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • We mathematically analyze the passband vestigial sideband (VSB) system for the Advanced Television Systems Committee (ATSC) digital television standard and present a baseband-equivalent VSB model. The obtained baseband VSB model is represented by convolution of the transmission signal (before modulation) and the baseband equivalent of the complex VSB channel. Due to the operation of the physical channel as an RF passband and the asymmetrical property of VSB modulation, it is necessary to use a complex model. However, the passband channel may be reduced to an equivalent baseband. We show how to apply standard channel model information such as delay, gain, and phase for multiple signal paths to compute both the channel frequency response with a given carrier frequency and the resulting demodulated impulse response. Simulation results illustrate that the baseband VSB model is equivalent to the passband VSB model.

  • PDF