• Title/Summary/Keyword: Advanced oxidation process

Search Result 363, Processing Time 0.034 seconds

A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process (고도산화공정을 이용한 고농도 무전해 니켈도금 폐액 처리방안 연구)

  • Seo, Minhye;Cho, Sungsu;Lee, Sooyoung;Kim, Jinho;Kang, Yong-Ho;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.270-274
    • /
    • 2015
  • We develop advanced oxidation processes for the treatment of spent electroless nickel plating solution. Apart form recovering nickel by leaching and enrichment, more emphasis is placed on rendering the waste water recyclable via oxidizing phosphite and hypophosphite into phosphate which can then be precipitated easily. $UV/H_2O_2$ process is employed and the conversion efficiency of COD and $PO_4-P$, and $H_2O_2$ consumption are analyzed. Furthermore, the $UV/H_2O_2/O_3$ process in conjunction with $O_3$ generator enables us to not only save the treatment time by 6 hours but also reduce $H_2O_2$ consumption by 30%.

A Study on the Dye Wastewater Treatment by Advanced Oxidation Process (고급산화공정을 이용한 염료폐수의 처리기술 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Park, Sei Joon;Kang, Min Gu;Kim, Jong Sung;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent (염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Chae, Byung-man;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.158-162
    • /
    • 2017
  • $FeCl_3$ solution has been used as an etchant for metal etching such as Fe, Cu, Al and Ni. In the etching process, $Fe^{3+}$ is reduced to $Fe^{2+}$ and the etching efficiency is decreased. Waste $FeCl_3$ etchant has environmental, economic problems and thus the regeneration of the etching solution has been required. In this study, HCl was mixed with the $FeCl_2$ solution and then, $H_2O_2$, $NaClO_3$ were added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. The ORP is increased with increasing the concentration of $H_2O_2$ and $NaClO_3$, and then the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency was about 99% when a sufficient amount of HCl and $H_2O_2$, $NaClO_3$ were added.

A Study on the Oxidation Process for Regeneration of Ferric Chloride Etching Solution (염화철 에칭 용액 재생을 위한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.18-24
    • /
    • 2017
  • The $FeCl_3$ solution has been used as an etchant for etching of metal. It is necessary to reuse the etching solution because waste $FeCl_3$ etchant generated after use has provided environmental and economic problems. In this study, HCl was mixed with the $FeCl_2$ solution and then $H_2O_2$ was added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. As a result, this study found that the ORP was increased with increasing the concentration of HCl and $H_2O_2$, while the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency reached about 99% when a sufficient amount of HCl and $H_2O_2$ were added.

Oxidation Process of Epitaxial Ni(111) Thin Films Deposited on GaN/Sapphire(0001) Substrates (GaN/Sapphire(0001) 기판위에 증착한 epitaxial Ni(111) 박막의 산화 과정)

  • Seo, S.H.;Kang, Hyon-Chol
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • This paper reports the oxidation mechanism of epitaxial Ni thin films grown on GaN/sapphire(0001) substrates, investigated by real-time x-ray diffraction and scanning electron microscopy. At the initial stage of oxidation process, a thin NiO layer with a thickness of ${\sim}50\;{\AA}$ was formed on top of the Ni films. The growth of such NiO layer was saturated and then served as a passive oxide layer for the further oxidation process. For the second oxidation stage, host Ni atoms diffused out to the surfaces of initially formed NiO layer through the defects running vertically to form NiO grains, while the sites that were occupied by host Ni, became voids. The crystallographic properties of resultant NiO films, such as grain size and mosaic distribution, rely highly on the oxidation temperatures.

Comparison of Acetaminophen Degradation Performance using Advanced Oxidation Process (고급산화공정을 이용한 아세트아미노펜 분해 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.319-328
    • /
    • 2022
  • This study investigated the treatment of acetaminophen in municipal wastewater by conventional ozonation, ozone-based advanced oxidation, ozone/UV, and the electro-peroxone process. The ozone/UV process and electro-peroxone process of electric power consumption increased 1.25 and 2.04 times, respectively, compared to the ozone process. The pseudo-steady OH radical concentration was the greatest in the electro-peroxone process and lowest in the ozone process. The specific energy consumption for TOC decomposition of the ozone/UV process and electro-peroxone process were 22.8% and 15.5% of the ozone process, respectively. Results suggest that it is advantageous in terms of degradation performance and energy consumption to use a combination of processes in municipal wastewater treatment, rather than an ozone process alone. In combination with the ozone process, the electrolysis process was found to be more advantageous than the UV process.

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

A study on production of dry oxidant by decomposition of H2O2 on K-Mn/Fe2O3 catalyst and NO oxidation process according to simulated flue gas flow (K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정)

  • Choi, Hee Young;Shin, Woo Jin;Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.367-375
    • /
    • 2017
  • In this study, NO oxidation process was studied to increase the NO treatment efficiency of pollutant present in exhaust gas. $H_2O_2$ catalytic cracking was introduced as a method of producing dry oxidizing agents with strong oxidizing power. The $K-Mn/Fe_2O_3$ heterogeneous catalysts applicable to the $H_2O_2$ decomposition process were prepared and their physico-chemical properties were investigated. The prepared dry oxidant was applied to the NO oxidation process to treat the simulated exhaust gas containing NO, NO conversion rates close to 100% were confirmed at various flow rates (5, 10, 20 L/min) of the simulated flue gas.

Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process (정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Effective Treatment of N-Nitrosodimethylamine using Advanced Oxidation Process (UV Process) and Toxicity Evaluation (고도산화공정(UV공정)을 이용한 NDMA의 효율적인 처리와 독성 평가)

  • Song, Won-Yong;Chang, Soon-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • This study investigates the oxidative degradation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, by advanced oxidation process (i.e., UV process). The experiments were performed with various pH, initial concentration, UV intensity, and addition of $H_2O_2$ or $TiO_2$ on UV process. The results showed that the direct UV photolysis was the most effective treatment method. The lower pH, intial concentration and higher intensity of UV stimulated higher NDMA removal. However, addition of oxidant ($H_2O_2$, $TiO_2$) slows down photochemical treatment of NDMA since the oxidant can filter out the UV light and block it to reach the NDMA molecules. Dimethylamine (DMA) and nitrite were found to be a major byproduct from NDMA oxidation. To evaluate the chronic toxicity effects of UV-treated NDMA on the growth of microalgae, "Skeletonema costatum", was studied as long term experiments. Results demonstrated that after the 13 days exposure the chronic toxicity was decreased about 15% with application of UV process on NDMA degradation.