• Title/Summary/Keyword: Advanced oxidation process

Search Result 366, Processing Time 0.044 seconds

A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.59-86
    • /
    • 2021
  • Landfilling is the most commonly adopted method for a large quantity of waste disposal. But, the main concern related to landfills is the generation of leachate. The leachate is high strength wastewater that is usually characterized by the presence of high molecular recalcitrant organics. Several conventional methods are adopted for leachate treatment. However, these methods are only suitable for young leachate, having high biodegradability and low toxicity levels. The mature and stabilized leachate needs advanced technologies for its effective treatment. Advanced oxidation processes (AOPs) are very suitable for such complex wastewater treatment as reported in the literature. After going through the literature survey, it can be concluded that Fenton-based approaches are effective for the treatment of various high/low strength wastewaters treatment. The applications of the Fenton-based approaches are widely adopted and well recognized due to their simplicity, cost-effectiveness, and reliability for the reduction of high chemical oxygen demand (COD) as reported in several studies. Besides, the process is relatively economical due to fewer chemical, non-sophisticated instruments, and low energy requirements. In this review, the conventional and advanced Fenton's approaches are explained with their detailed reaction mechanisms and applications for landfill leachate treatment. The effect of influencing factors like pH, the dosage of chemicals, nature of reaction matrix, and reagent ratio on the treatment efficiencies are also emphasized. Furthermore, the discussion regarding the reduction of chemical oxygen demand (COD) and color, increase in biodegradability, removal of humic acids from leachate, combined processes, and the pre/post-treatment options are highlighted. The scope of future studies is summarized to attain sustainable solutions for restrictions associated with these methods for effective leachate treatment.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

Catalytic Oxidation of Phenol Analogues in Aqueous Medium Over Fe/SBA-15

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3009-3016
    • /
    • 2012
  • This study evaluated the use of iron-impregnated SBA-15 (Fe/SBA-15) as a catalyst for the oxidative degradation of persistent phenol analogues, such as 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP) and 2,4,6-trichlorophenol (2,4,6-TCP) in water. The oxidation reactions were carried out with reaction time, concentration of the phenols, amount of the catalysts, reaction temperature, pH of the reaction mixture as the process variables with or without using hydrogen peroxide as the oxidizing agent. The conversion achieved with Fe/SBA-15 at 353 K for 2-CP, 4-CP, 2-NP, 4-NP, 2,4,6-TCP was 80.2, 71.2, 53.1, 62.8, 77.3% in 5h with a reactant to $H_2O_2$ mole ratio of 1:1, and 85.7, 65.8, 61.9, 63.7, 78.1% in the absence of $H_2O_2$, respectively. The reactions followed pseudo first order kinetics. The leachability study indicated that the catalyst released very little iron into water and therefore, the possibility of secondary pollution is negligible.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Evaluation of brine reuse on salting of chinese cabbage using electrochemical process (전기화학적 처리에 의한 배추 절임염수 재이용 가능성 평가)

  • Jung, Heesuk;Lee, Eunsil;Han, Seongkuk;Han, Eungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.541-548
    • /
    • 2014
  • The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.

Study on the Electrical Stability of Al-doped ZnO Thin Films For OLED as an alternative electrode

  • Jung, Jong-Kook;Lee, Seong-Eui;Lim, Sil-Mook;Lee, Ho-Nyeon;Lee, Young-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1469-1472
    • /
    • 2006
  • We investigated the electrical and optical properties of ZnO:Al thin films as a function of the thermal process conditions. The film was prepared by RF magnetron sputtering followed by annealing in a box furnace in air. An ZnO:Al (98:2) alloy with the purity of 99.99% (3 inch diameter) was used as the target material. The electrical properties of the transparent electrode, exhibited surface oxidation as a result of rapid oxygen absorption with increasing annealing temperature. The processed ZnO:Al films and commercial ITO(indium-tin-oxide) were applied to an OLED stack to investigate the current density and luminescence efficiency. The efficiency of the device using the ZnO:Al electrode was higher than that from the device using the ITO electrode.

  • PDF

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes (오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리)

  • Jun, Jun Chul;Kwon, Tae Ouk;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.298-303
    • /
    • 2007
  • Several combinations of ozone based advanced oxidation processes were tested for the treatment of red water (RW) containing recalcitrant chemical pollutants produced from 2,4,6-trinitrotoluene (TNT) manufacturing process. $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested for the treatment of RW. The order of organic and color removal efficiency was found to be : $O_3{\leq}UV/O_3$ < $UV/O_3/H_2O_2$ < $UV/O_3/H_2O_2/Fe^{2+}$. The optimum conditions for the removal of organic and color in the $UV/O_3/H_2O_2/Fe^{2+}$ process were 0.053 g/min of ozone flow rate, 10 mM of $H_2O_2$ concentration and 0.1 mM of $FeSO_4$ concentration. Organic and color removal efficiencies were 96 and 100 % respectively in the $UV/O_3/H_2O_2/Fe^{2+}$ process. tert-butyl alcohol (t-buOH) was used as the hydroxyl radical scavenger. Enhancement of hydroxyl radical production was achieved by the combination of ozone with several oxidants such as UV, $H_2O_2$, $Fe^{2+}$.

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF

Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process (황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리)

  • Hyuk Sung Chung;Nguyen Quoc Bien;Jae Young Choi;Inseong Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.