DOI QR코드

DOI QR Code

Catalytic Oxidation of Phenol Analogues in Aqueous Medium Over Fe/SBA-15

  • Mayani, Suranjana V. (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University) ;
  • Mayani, Vishal J. (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University) ;
  • Kim, Sang-Wook (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University)
  • Received : 2012.05.09
  • Accepted : 2012.06.22
  • Published : 2012.09.20

Abstract

This study evaluated the use of iron-impregnated SBA-15 (Fe/SBA-15) as a catalyst for the oxidative degradation of persistent phenol analogues, such as 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP) and 2,4,6-trichlorophenol (2,4,6-TCP) in water. The oxidation reactions were carried out with reaction time, concentration of the phenols, amount of the catalysts, reaction temperature, pH of the reaction mixture as the process variables with or without using hydrogen peroxide as the oxidizing agent. The conversion achieved with Fe/SBA-15 at 353 K for 2-CP, 4-CP, 2-NP, 4-NP, 2,4,6-TCP was 80.2, 71.2, 53.1, 62.8, 77.3% in 5h with a reactant to $H_2O_2$ mole ratio of 1:1, and 85.7, 65.8, 61.9, 63.7, 78.1% in the absence of $H_2O_2$, respectively. The reactions followed pseudo first order kinetics. The leachability study indicated that the catalyst released very little iron into water and therefore, the possibility of secondary pollution is negligible.

Keywords

References

  1. Nam, K. C.; Kim, J. M. Bull. Korean Chem. Soc. 1994, 15, 268- 270.
  2. Banat, F. A.; Al-Bashir, V.; Al-Asheh, S.; Hayajneh, O. Environ. Poll. 2000, 107, 391-398. https://doi.org/10.1016/S0269-7491(99)00173-6
  3. Tai, C.; Jiang, G. Chemosphere 2005, 59, 321-326. https://doi.org/10.1016/j.chemosphere.2004.10.024
  4. Chaliha, S.; Bhattacharyya, K. G. Chem. Eng. J. 2008, 139, 575- 588. https://doi.org/10.1016/j.cej.2007.09.006
  5. Chaliha, S.; Bhattacharyya, K. G. Ind. Eng. Chem. Res. 2008, 47, 1370-1379. https://doi.org/10.1021/ie071075f
  6. Xia, S.; Zhang, Z.; Zhong, F.; Zhang, J. J. Hazard. Mater. 2011, 186, 1367-1373. https://doi.org/10.1016/j.jhazmat.2010.12.023
  7. Najjar, W.; Chirchi, L.; Santos, E.; Ghorhel, A. J. Environ. Monitoring 2001, 3, 697-701. https://doi.org/10.1039/b102902a
  8. Chaliha, S.; Bhattacharyya, K. G.; Paul, P. J. Chem. Technol. Biotechnol. 2008, 83, 1353-1363. https://doi.org/10.1002/jctb.1934
  9. USEPA (United States Environmental Protection Agency), 1991, Water quality criteria summary, ecological risk assessment branch (WH-585) and human risk assessment branch (WH-550D). Health and Ecological Criteria Division, USEPA,Washington, DC, USA.
  10. Ye, F. X.; Shen, D. S. Chemosphere 2004, 54, 1573-1580. https://doi.org/10.1016/j.chemosphere.2003.08.019
  11. Chaliha, S.; Bhattacharyya, K. G. J. Hazard. Mater. 2008, 150, 728-736. https://doi.org/10.1016/j.jhazmat.2007.05.039
  12. Vinita, M.; Praveena, R.; Dorathi, J.; Palanivelu, K. Solar Energy 2010, 84, 1613-1618. https://doi.org/10.1016/j.solener.2010.06.008
  13. Egerton, T. A.; Christensen, P. A.; Harrison, R. W.; Wang, J. W. J. Appl. Electrochem. 2005, 35, 799-813. https://doi.org/10.1007/s10800-005-5168-9
  14. Freedman, H. M. Standard Handbook of Hazardous Waste Treatment and Disposal; Mc-Graw Hill Book Company: 1989.
  15. Chaliha, S.; Bhattacharyya, K. G.; Paul, P. Clean-Soil Air Water 2008, 36, 488-497. https://doi.org/10.1002/clen.200700180
  16. Zhao, J.; Zhang, Y.; Quan, X.; Chen, S. Sep. Purif. Technol. 2010, 71, 302-307. https://doi.org/10.1016/j.seppur.2009.12.010
  17. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicologicalprofile for nitrophenols: 2-nitrophenol, 4-nitrophenol, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 1992.
  18. Cheng, R.; Zhou, W.; Wang, J. L.; Qi, D. D.; Guo, L.; Zhang, W. X.; Qian, Y. J. Hazard. Mater. 2010, 180, 79-85. https://doi.org/10.1016/j.jhazmat.2010.03.068
  19. Gonzalez, L. F.; Sarria, V.; Sanchez, O. F. Bioresour. Technol. 2010, 101, 3493-3499. https://doi.org/10.1016/j.biortech.2009.12.130
  20. Jardim, W. F.; Moraes, S. G.; Takiyama, M. M. K. Water Res. 1997, 31, 1728-1732. https://doi.org/10.1016/S0043-1354(96)00349-1
  21. Danis, T. G.; Albanis, T. A.; Petrakis, D. E.; Promonis, P. J. Water Res. 1998, 32(2), 295-302. https://doi.org/10.1016/S0043-1354(97)00206-6
  22. Glaze, W. H.; Kang, J. W.; Chapin, D. H. Ozone-Sci. Eng. 1987, 9, 335-352. https://doi.org/10.1080/01919518708552148
  23. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 15, 710-712.
  24. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843. https://doi.org/10.1021/ja00053a020
  25. Taguchi, A.; Schüth, F. Micropor. Mesopor. Mater. 2005, 77, 1-45. https://doi.org/10.1016/j.micromeso.2004.06.030
  26. Corma, A.; Fornes, V.; Navarro, M. T.; Perez-Pariente, J. J. Catal. 1994, 148, 569-574. https://doi.org/10.1006/jcat.1994.1243
  27. Vinu, A.; Murugesan, V.; Tangermann, O.; Hartmann, M. Chem. Mater. 2004, 16, 3056-3065. https://doi.org/10.1021/cm049718u
  28. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036. https://doi.org/10.1021/ja974025i
  29. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548-552. https://doi.org/10.1126/science.279.5350.548
  30. Vinu, A.; Sawant, D. P.; Ariga, K.; Hossain, K. Z.; Halligudi, S. B.; Hartmann, M.; Nomura, M. Chem. Mater. 2005, 17, 5339- 5345. https://doi.org/10.1021/cm050883z
  31. Selvaraj, M.; Kawi, S. Chem. Mater. 2007, 19, 509-519. https://doi.org/10.1021/cm062009r
  32. Mayani, V. J.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. H.; Agrawal, S.; Jasra, R. V. J. Chromatogr. A 2008, 1191, 223-230. https://doi.org/10.1016/j.chroma.2008.02.041
  33. Melero, J. A.; Calleja, G.; Martinez, F.; Molina, R.; Pariente, M. I. Chem. Eng. J. 2007, 131, 245-256. https://doi.org/10.1016/j.cej.2006.12.007
  34. WHO, Guidelines for Drinking-Water Quality, 3rd ed.; 1: Recommendations, World Health Organization, Geneva, 2004.
  35. Stoyanova, M.; Christoskova, St.; Georgieva, M. Appl. Catal. A: General 2003, 249, 295-302. https://doi.org/10.1016/S0926-860X(03)00229-1
  36. Li, N.; Descorme, C.; Besson, M. App. Catal. B: Environmen 2007, 71, 262-270. https://doi.org/10.1016/j.apcatb.2006.09.009
  37. Qin, J.; Zhang, Q.; Chuang, K. T. App. Catal. B: Environmen. 2001, 29, 115-123. https://doi.org/10.1016/S0926-3373(00)00200-9
  38. Abecassis-Wolfovich, M.; Landau, M. V.; Brenner, A.; Herskowitz, M. J. Catal. 2007, 247, 201-213. https://doi.org/10.1016/j.jcat.2007.01.015
  39. Suarez-Ojeda, M. E.; Stüber, F.; Fortuny, A.; Fabregata, A.; Carrera, J.; Font, J. App. Catal. B: Environmen. 2005, 58, 105-114. https://doi.org/10.1016/j.apcatb.2004.11.017

Cited by

  1. H Mesoporous Catalysts with Different Si/Fe Molar Ratios: Synthesis, Characterization and Catalytic Activity vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1481
  2. Paper-based microfluidic device for bisphenol A based chemical reaction and image analysis vol.10, pp.1, 2016, https://doi.org/10.1007/s13206-016-0104-0
  3. Effect of HO?, SO4?- and CO3?-/HCO3? radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous vol.267, pp.None, 2012, https://doi.org/10.1016/j.cej.2015.01.019
  4. Improvement of the Catalytic Performances of SBA‐15 in the Formylation of Aniline upon the Introduction of Template‐Free Nano‐Faujasite in Its Synthesis Gel vol.6, pp.30, 2021, https://doi.org/10.1002/slct.202101782