• Title/Summary/Keyword: Advanced information display

Search Result 294, Processing Time 0.026 seconds

Improved Conductivity by Effective Wetting of Single Walled Carbon Nanotubes Film

  • Manivannan, S.;Ryu, Je-Hwang;Jeong, Il-Ok;Jang, Jin;Park, Kyu-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1598-1601
    • /
    • 2008
  • We describe the fabrication of transparent conducting single-walled carbon nanotubes (SWCNTs) film on flexible substrate following the conventional spin coating method. The fabricated film was post treated with diluted acid solution and its electrical and optical characterizations were performed. The electrical conductivity of SWCNTs film was enhanced and the film was found to be attached strongly with substrate after the post treatment.

  • PDF

Amorphous Silicon Gate Driver with High Stability

  • Koo, Ja-Hun;Choi, Jae-Won;Kim, Young-Seoung;Kang, Moon-Hyo;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1271-1274
    • /
    • 2006
  • Integrated a-Si:H gate driver with high reliability has been designed and simulated. The proposed a-S:H gate driver has only one reset transistor under AC driving for P and output node. These reset transistors show much less degradation than those under DC driving. The simulation results show that the lifetime and response time are improved significantly compared with those of the prior circuit.

  • PDF

Effect of Current-Aging on Field Emission from Carbon Nanotube Field Emitter Arrays

  • Kim, Ki-Seo;Ryu, Je-Hwang;Lee, Chang-Seok;Manivannan, S.;Moon, Jong-Hyun;Ahn, Jung-Sun;Jang, Jin;Park, Kyu-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.782-785
    • /
    • 2007
  • We studied the effect of current-aging on field emission from carbon nanotubes field emitter arrays (CNT-FEAs) selectively patterned by the resist-assistan tpatterning(RAP) process. After sustaining the electric field when starting emission current density $(J_s)$ is $0.1\;mA/cm^2$ during 40 hrs, it was observed that the field emission property and uniformity were remarkably improved due to the elimination of oxygen atom and thus the reconstruction of carbon bonding at the tip of CNTs during field emission.

  • PDF

Fabrication of carbon nanotube electron beam (C-beam) for thin film modification

  • Kang, Jung Su;Lee, Su Woong;Lee, Ha Rim;Chung, Min Tae;Park, Kyu Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.171.1-171.1
    • /
    • 2015
  • Carbon nanotube emitters is very promising electron emitter for electron beam applications. We introduced the carbon nanotube electron beam (C-beam) exposure technic using triode structure. As a source, the electron beam emit from CNT emitters placed at the cathode by high electric field. Through the gate mesh, with high accelerating energy, the electron can be extracted easily and impact at the anode plate. For thin film modification, after the C-beam exposure on the amorphous silicon thin film, we found phase changes and it showed a high crystallinity from the Raman measurement. We expect that this crystallized film will be a good candidate as a new active layer of TFT.

  • PDF

Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique

  • Ryu, Je-Hwang;Kim, Ki-Seo;Yu, Yi-Yin;Lee, Chang-Seok;Lee, Yi-Sang;Jang, Jin;Park, Kyu-Chang
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.30-34
    • /
    • 2008
  • Field emitter arrays (FEAs) were developed using carbon nanotubes (CNTs) as electron emission sources. The CNTs were grown using a selective-positioning technique with a resist-protection layer. The light emission properties were studied through the electron emission of the CNTs on patterned islands, which were modulated with island diameter and spacing. The electron emission of CNT arrays with $5{\mu}m$ diameters and $10{\mu}m$ heights increased with increased spacing (from $10{\mu}m$ to $40{\mu}m$). The electron emission current of the $40-{\mu}m$-island-spacing sample showed a current density of 1.33 mA/$cm^2$ at E = 11 V/${\mu}m$, and a turn-on field of 7 V/${\mu}m$ at $1{\mu}A$ emission current. Uniform electron emission current and light emission were achieved with $40{\mu}m$ island spacing and $5{\mu}m$ island diameter.

A Novel Digital Driving Method for AM-OLED

  • Lee, Seung-Woo;Choi, Jae-Won;Jang, Jin;Chung, Hoon-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.837-840
    • /
    • 2007
  • We propose a novel digital driving method for AM-OLED (Active Matrix-Organic Light Emitting Diode) display. Proposed method modulates $V_{DD}$ so that luminance may be weighted in accordance with the bit significance. We can increase the minimum emission time or slower scan circuits are applicable by using proposed method.

  • PDF

Solution Processed Single Walled Carbon Nanotubes Transparent Conducting Films (투명전도막을 위한 용해 처리된 단일막 탄소나노튜브)

  • Manivannan, S.;Jeong, Il-Ok;Ryu, Je-Hwang;Jang, Jin;Park, Kyu-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.45-45
    • /
    • 2008
  • In recent years, new materials and technology has been developed using single-walled carbon nanotubes (SWCNTs) as an alternative to indium tin oxide (ITO) to fulfil the requirements towards novel technological drive. These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. In addition, SWCNTs can be solution processed to replace the sophisticated vacuum techniques at high temperatures. In the present work, transparent conducting films were fabricated from the purified SWCNTs. Dispersion of purified SWCNTs was accomplished in 1,2-dichlorobenzene without using surfactants or polymers following ultrasonic process. We achieved coating of nanotubes film on poly ether suiphone (PES) for an average sheet resistance ~110 ${\Omega}/{\Box}$ of optical transmittance 80% at 550 nm. Conventional spin coating method was followed to fabricate films from the purified and dispersed nanotubes solution. The results will be presented.

  • PDF

2.2 inch qqVGA AMOLED drived by ultra low temperature poly silicon (ULTPS) TFT direct fabricated below $200^{\circ}C$

  • Kwon, Jang-Yeon;Jung, Ji-Sim;Park, Kyung-Bae;Kim, Jong-Man;Lim, Hyuck;Lee, Sang-Yoon;Kim, Jong-Min;Noguchi, Takashi;Hur, Ji-Ho;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.309-313
    • /
    • 2006
  • We demonstrated 2.2inch qqVGA AMOLED display drived by ultra low temperature poly-Si (ULTPS) TFT not transferred but direct fabricated below $200^{\circ}C$. Si channel was crystallized by decreasing impurity concentration even at room temperature. Gate insulator with a breakdown field exceeding 8 MV/cm was realized by Inductively coupled plasma - CVD. In order to reduce stress of plastic, organic film was coated as inter-dielectric and passivation layers. Finally, ULTPS TFT of which mobility is over $20cm^2/Vsec$ was fabricated on transparent plastic substrate and drived OLED display successfully.

  • PDF

Integration of 4.5' Active Matrix Organic Light-emitting Display with Organic Transistors

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.21-23
    • /
    • 2006
  • We developed a 4.5" 192${\times}$64 active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is 800${\mu}m$ and lO${\mu}m$ respectively and the driving OTFT has 1200${\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5$ $cm^2$/V·sec, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.