• Title/Summary/Keyword: Advanced imaging techniques

Search Result 102, Processing Time 0.024 seconds

Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography

  • Choi, Jung-Yoo Chesaria;Choi, Cham Albert;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.4
    • /
    • pp.202-212
    • /
    • 2018
  • Purpose: Bone-to-implant contact (BIC) is difficult to measure on micro-computed tomography (CT) because of artifacts that hinder accurate differentiation of the bone and implant. This study presents an advanced algorithm for measuring BIC in micro-CT acquisitions using a spiral scanning technique, with improved differentiation of bone and implant materials. Methods: Five sandblasted, large-grit, acid-etched implants were used. Three implants were subjected to surface analysis, and 2 were inserted into a New Zealand white rabbit, with each tibia receiving 1 implant. The rabbit was sacrificed after 28 days. The en bloc specimens were subjected to spiral (SkyScan 1275, Bruker) and round (SkyScan 1172, SkyScan 1275) micro-CT scanning to evaluate differences in the images resulting from the different scanning techniques. The partial volume effect (PVE) was optimized as much as possible. BIC was measured with both round and spiral scanning on the SkyScan 1275, and the results were compared. Results: Compared with the round micro-CT scanning, the spiral scanning showed much clearer images. In addition, the PVE was optimized, which allowed accurate BIC measurements to be made. Round scanning on the SkyScan 1275 resulted in higher BIC measurements than spiral scanning on the same machine; however, the higher measurements on round scanning were confirmed to be false, and were found to be the result of artifacts in the void, rather than bone. Conclusions: The results of this study indicate that spiral scanning can reduce metal artifacts, thereby allowing clear differentiation of bone and implant. Moreover, the PVE, which is a factor that inevitably hinders accurate BIC measurements, was optimized through an advanced algorithm.

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Long Term Follow-Up after Skull Base Reconstrucion (두개저부 종양 절제 및 재건 후 장기 추적관찰)

  • Jin, Ung Sik;Won Minn, Kyung;Heo, Chan Yeong
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.175-182
    • /
    • 2005
  • Skull base tumors have been determined inoperable because it is difficult to accurately diagnose the extent of the involvement and to approach and excise the tumor safely. However, recently, the advent of sophisticated diagnostic tools such as computed tomography and magnetic resonance imaging as well as the craniofacial and neurosurgical advanced techniques enabled an accurate determination of operative plans and safe approach for tumor excision. Resection of these tumors may sometimes result in massive and complex extirpation defects that are not amenable to local tissue closure. The purpose of this study is to analyze experiences of skull base reconstruction and to evaluate long term survival rate and complications. All cranial base reconstructions performed from July 1993 to September 2000 at Department of Plastic and Reconstructive Surgery of the Seoul National University Hospital were observed. The medical records were reviewed and analysed to assess the location of defects, reconstruction method, existence of the dural repair, history of preoperative radiotherapy and chemotherapy, complications and causes of death of the expired patients. There were 12 cases in region II, 8 cases in region I and 1 case in region III according to the Irish classification of skull base. Cranioplasty was performed in 4 patients with a bone graft and microvascular free tissue transfer was selected in 17 patients to reconstruct the cranial base and/or mid-facial defects. Among them, 11 cases were reconstructed with a rectus abdominis musculocutaneous free flap, 2 with a latissimus dorsi muscluocutaneous free flap, 1 with a fibular osteocutaneous free flap, 2 with a scapular osteocutaneous free flap, and 1 with a forearm fasciocutaneous free flap, respectively. During over 3 years follow-up, 5 patients were expired and 8 lesions were relapsed. Infection(3 cases) and partial flap loss(2 cases) were the main complications and multiorgan failure(3 cases) by cancer metastasis and sepsis(2 cases) were causes of death. Statistically 4-years survival rate was 68%. A large complex defects were successfully reconstructed by one-stage operation and, the functional results were also satisfactory with acceptable survival rates.

Gamma Knife Radiosurgery for Vestibular Schwannomas

  • Lim, Young-Jin;Choi, Seok-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • Vestibular schwannoma (VS) is a benign tumor typically originated in the schwann cell of vestibular nerve and usually accompany hearing symptom. Microsurgical removal and radiosurgery have a great role for the treatment of VS. Recently radiosurgery has been considered as an alternative or primary treatment for VS with the tremendous increase of patients who were treated with gamma knife radiosurgery (GKS) though microsurgery still takes the premier. By many published results, it is proved that GKS is a effective and noninvasive technique for VS, especially small sized tumors with satisfactory tumor control rate. The authors assumed that GKS can be expected to achieve satisfactory tumor control rate for small VS under 5cc in volume. A major interest regarding radiosurgery nowadays is to determine the optimal radiation dose for hearing preservation to improve the quality of life of patients. The more high radiation dose are used for effective tumor growth control, the more radiation-related complications like as hearing deficit, the impairment of other cranial nerve function are increased. Since 1990's the mean radiation dose for tumor margin was more than 18 Gy, but there were high complication rate in spite of good tumor growth control. After the year of 2000, under the influence of advanced neuro-imaging techniques and radiosurgical planning system which enable clinicians to do more precise planning, marginal dose for VS has been decreased to 12-13 Gy and the radiation-related complications has been reduced. But because there may be a unexpected radiation induced complications as time goes by after the latency period, optimal radiation dose for VS should be established on the basis of more long term follow-up observation.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Patterns of care for patients with nasopharyngeal carcinoma (KROG 11-06) in South Korea

  • Sung, Soo Yoon;Kang, Min Kyu;Kay, Chul Seung;Keum, Ki Chang;Kim, Sung Hwan;Kim, Yeon-Sil;Kim, Won Taek;Kim, Ji-Yoon;Kim, Jin-Hee;Moon, Sung Ho;Ahn, Yong Chan;Oh, Young Taek;Wu, Hong-Gyun;Lee, Chang-Geol;Chung, Woong-Ki;Cho, Kwan Ho;Cho, Moon-June;Choi, Jin Hwa
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.188-197
    • /
    • 2015
  • Purpose: To investigate the patterns of care for patients with nasopharyngeal carcinoma (NPC) in South Korea. Materials and Methods: A multi-institutional retrospective study was performed (Korean Radiation Oncology Group [KROG] 11-06) on a total of 1,445 patients from 15 institutions. Results: Of the 1,445 patients, more than half were stages III (39.9%) and IV (35.8%). In addition to patterns of care, we also investigated trends over time with the periods 1988-1993, 1994-2002, and 2003-2011. The frequencies of magnetic resonance imaging and positron emission tomography-computed tomography were markedly increased in the third period compared to previous 2 periods. Concurrent chemoradiation (CCRT) was performed on 894 patients (61.9%), neoadjuvant chemotherapy on 468 patients (32.4%), and adjuvant chemotherapy on 366 patients (25.3%). Of stage II-IV patients, CCRT performed on 78.8% in 2003-2011 compared to 15.0% in 1988-1993. For patients treated with CCRT, cisplatin was the most commonly used agent in 81.3% of patients. Over the periods of time, commonly used radiotherapy (RT) techniques were changed from 2-dimensional RT (1988-1993, 92.5%) to 3-dimensional RT (2003-2011, 35.5%) or intensity-modulated RT (IMRT; 2003-2011, 56.5%). Median RT doses given to primary tumors, high-risk lymphatics, and low-risk lymphatics were 70.0 Gy, 58.1 Gy, and 48.0 Gy, respectively. Adoption of IMRT increased the dose per fraction and escalated total radiation dose. Conclusion: Assessment of the patterns of care for NPC patients in South Korea demonstrated that management for NPC including diagnostic imaging, treatment regimen, RT techniques and dose schedule, advanced in accordance with the international guidelines.

Development of a Remotely Sensed Image Processing/Analysis System : GeoPixel Ver. 1.0 (JAVA를 이용한 위성영상처리/분석 시스템 개발 : GeoPixel Ver. 1.0)

  • 안충현;신대혁
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1997
  • Recent improvements of satellite remote sensing sensors which are represented by hyperspectral imaging sensors and high spatial resolution sensors provide a large amount of data, typically several hundred megabytes per one scene. Moreover, increasing information exchange via internet and information super-highway requires the developments of more active service systems for processing and analysing of remote sensing data in order to provide value-added products. In this sense, an advanced satellite data processing system is being developed to achive high performance in computing speed and efficieney in processing a huge volume of data, and to make possible network computing and easy improving, upgrading and managing of systems. JAVA internet programming language provides several advantages for developing software such as object-oriented programming, multi-threading and robust memory managent. Using these features, a satellite data processing system named as GeoPixel has been developing using JAVA language. The GeoPixel adopted newly developed techniques including object-pipe connect method between each process and multi-threading structure. In other words, this system has characteristics such as independent operating platform and efficient data processing by handling a huge volume of remote sensing data with robustness. In the evaluation of data processing capability, the satisfactory results were shown in utilizing computer resources(CPU and Memory) and processing speeds.