• 제목/요약/키워드: Advanced Water Treatment Process

검색결과 339건 처리시간 0.024초

Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis

  • Shah, Aarif Hussain;Rather, Mushtaq Ahmad
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.397-414
    • /
    • 2021
  • The steady growth in population has led to an enhanced water demand and immense pressure on water resources. Pharmaceutical residues (PRs) are unused or non-assimilated medicines found in water supplies that originate from the human and animal consumption of antibiotics, antipyretics, analgesics etc. These have been detected recently in sewage effluents, surface water, ground water and even in drinking water. Due to their toxicity and potential hazard to the environment, humans and aquatic life, PRs are now categorized as the emerging contaminants (ECs). India figures in the top five manufacturers of medicines in the world and every third pill consumed in the world is produced in India. Present day conventional wastewater treatment methods are ineffective and don't eliminate them completely. The use of nanotechnology via advanced oxidation processes (AOP) is one of the most effective methods for the removal of these PRs. Present study is aimed at reviewing the presence of various PRs in water supplies and also to describe the process of AOP to overcome their threat. This study is also very important in view of World Health Organization report confirming more than 30 million cases of COVID-19 worldwide. This will lead to an alleviated use of antibiotics, antipyretics etc. and their subsequent occurrence in water bodies. Need of the hour is to devise a proper treatment strategy and a decision thereof by the policymakers to overcome the possible threat to the environment and health of humans and aquatic life.

광촉매 및 다채널 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 유기물의 영향 (Advanced Water Treatment by Hybrid Process of Multi-channel Ceramic MF and Photocatalyst: Effect of Organic Materials)

  • 볼러 암말사나;박진용
    • 멤브레인
    • /
    • 제21권4호
    • /
    • pp.351-359
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid process that was composed of photocatalyst packing in space of between outside of multi-channel ceramic microfiltration membrane and membrane module inside. Photocatalyst was polypropylene (PP) beads coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, standard NOM solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) increased and J decreased as concentration of humic acid changed from 2 mg/L to 10 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiency of turbidity and $UV_{254}$ absorbance were above 96.4% and 78.9%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in (MF), (MF + $TiO_2$), (MF + $TiO_2$ + UV) processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of $UV_{254}$ absorbance by adsorption (MF + $TiO_2$) and photo-oxidation (MF + $TiO_2$ + UV) at humic acid of 4 mg/L and 6 mg/L were above 9.0, 9.5 and 8.1, 10.9%, respectively.

연속식 오존접촉조에서의 정수처리효과에 대한 연구 (Advanced Water Treatment by Ozonation in a Continuous Flow System)

  • 이병호;정우성;김재훈;이준희;김태건
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.94-104
    • /
    • 1997
  • Ozone Treatment is getting a common process in a water treatment plant all over the nation. Especially an advanced water treatment using ozone and biofiltration has been a typical method in the regions where using the Nak-Dong River as a drinking water source. The effectiveness of ozone treatment in a continuous flow contact system was investigated with sand filtered water of the Nak-dong River. Pilot tests of the experiments were performed three times of the year like June, August, and October 1995. Most degradable organics of sand filtered water were oxidized in the first and second contact chamber of the system. Ozone treatment was effective for the removal of UV254 absorbance. However, Noticeable removals of $KMnO_4$ demand and TOC(Total Organic Carbon) were occurred when their concentrations exceeded about 5mg/l. The organics causing $KMnO_4$ demand and TOC were degraded into lower molecular matter in an early stage of the ozone contact in the system. Dissolved oxygen concentration was increased after ozone treatment.

  • PDF

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

고도정수처리 과정에서 퍼클로레이트 이온의 농도 변화 (Perchlorate in Advanced Drinking Water Treatment Process)

  • 김현구;김정화;이연희;이재호;김산
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.164-168
    • /
    • 2008
  • Perchlorate, which is still unregulated, is found in tap water, posing a threat to public health. In and out of Korea, there is no clear standard for drinking water quality or discharge. To make matters worse, Perchlorate study is in its infancy in Korea. This research tracked fresh water and purified water of water purification facility A and B located at the city of D, where Nak-dong River is being utilized as the purified water. And it was found that purified water shows no particular pattern in Perchlorate concentrations but represented a higher level of concentration compared to fresh water. With utilizing the research results, the study sought the impact of activated-carbon treatment process on Perchlorate elimination and found out that Perchlorate concentrations increased 38% after the process. The result proves that conventional water purification process can't eliminate Perchlorate. Therefore, it is reasonable that Perchlorate discharge from sources should be minimized.

A Study of the Technical Treatment within an Environmental Appetency for the Ballast Water

  • Nam, Chung-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1313-1323
    • /
    • 2004
  • In accordance with adoption of new convention for the control of ship's ballast water at the diplomatic conference held in London Feb, 2004, every country has to regulate the ballast water and deposit matters. When this Resolution comes into effect in 2009, all vessels engaged in international voyage must have ballast water control program, ballast water records, equipments which are suitable to the standard of exchange and performance for the ballast water. This study estimates objectively their performances, merits and demerits of the ballast water treatment technique and exchanging techniques for safe operation of ships. It is desirable to design an equipment to control the ballast water using the brush-type vacuum suction nonstop reverse cleaning system to overcome the clogging phenomenon and the direct disc filtering to maximize filtering area for the optimum process considering biological availabilities. It will be expected to protect against marine pollution and to maintain clean sea if it is secured to develop new ballast water treatment techniques. And it will also be expected to cope with the Resolution and each regulation of the developed countries from the ballast water.

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien;Chong, Chun Yew;Sunarya, Muhammad Hamdan;Lau, Woei Jye;Liang, Yong Yeow;Fong, See Yin;Ismail, Ahmad Fauzi
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.323-331
    • /
    • 2020
  • With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

고도산화공정(UV공정)을 이용한 NDMA의 효율적인 처리와 독성 평가 (Effective Treatment of N-Nitrosodimethylamine using Advanced Oxidation Process (UV Process) and Toxicity Evaluation)

  • 송원용;장순웅
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.90-95
    • /
    • 2009
  • This study investigates the oxidative degradation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, by advanced oxidation process (i.e., UV process). The experiments were performed with various pH, initial concentration, UV intensity, and addition of $H_2O_2$ or $TiO_2$ on UV process. The results showed that the direct UV photolysis was the most effective treatment method. The lower pH, intial concentration and higher intensity of UV stimulated higher NDMA removal. However, addition of oxidant ($H_2O_2$, $TiO_2$) slows down photochemical treatment of NDMA since the oxidant can filter out the UV light and block it to reach the NDMA molecules. Dimethylamine (DMA) and nitrite were found to be a major byproduct from NDMA oxidation. To evaluate the chronic toxicity effects of UV-treated NDMA on the growth of microalgae, "Skeletonema costatum", was studied as long term experiments. Results demonstrated that after the 13 days exposure the chronic toxicity was decreased about 15% with application of UV process on NDMA degradation.

광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물역세척 주기의 영향 (Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Water Back-flushing Period)

  • 박진용;박성우
    • 멤브레인
    • /
    • 제22권4호
    • /
    • pp.243-250
    • /
    • 2012
  • 본 연구에서는 정수처리용 알루미나 정밀여과 및 광촉매의 혼성공정에서 물역세척 주기(filtration time, FT) 변화의 영향을 알아보고, 탄소 정밀여과막 또는 알루미나 한외여과막을 사용한 기존 결과들과 비교하였다. 물역세척 시간(BT)는 10초로 고정한 채, FT를 2~10분으로 변화시키면서, 그 영향을 180분 운전 후 막 오염에 의한 저항($R_f$), 투과선속(J)과 총여과부피($V_T$) 측면에서 고찰하였다. FT가 감소할수록, $R_f$는 감소하고 J는 증가하여 탄소 정밀여과막 또는 알루미나 한외여과막을 사용한 기존 결과들과 동일하였다. 탁도의 처리효율은 98.1% 이상으로 높게 나타났으며, FT 변화에 의한 영향이 보이지 않아 탄소 정밀여과막을 사용한 기존의 결과와 유사하였다. 한편, 유기물의 처리효율은 FT 8분 조건에서 89.6%로 가장 높았으며, FT 변화의 영향이 보이지 않았고 기존의 결과들보다 다소 높은 유기물 제거율을 보였다.

수도 서비스의 진화! 소비자 중심의 스마트 물 관리 - Smart Water City 시범사업 - (Evolution of Water supply system! Smart Water Management for customer - Smart Water City Pilot Project -)

  • 김재복
    • 상하수도학회지
    • /
    • 제29권4호
    • /
    • pp.511-517
    • /
    • 2015
  • Korea's modern waterworks began with construction of DDukdo water treatment plant in 1908 and has been growing rapidly along with the country's economic development. As a result, water supply rates have reached 98.5% based on 2013. Despite multilateral efforts for high-quality water supply, such as introduction of advanced water treatment process, expansion of waterworks infrastructure and so on, distrust for drinking tap water has been continuing and domestic consumption rate of tap water is in around 5% level and extremely poor comparing to advanced countries such as the United States(56%), Japan(52%), etc. Recently, the water management has been facing the new phase due to water environmental degradation caused by climate change, aging facilities, etc. Therefore, K-water has converted water management paradigm from the "clean and safe water" to the "healthy water" and been pushing the Smart Water City(SWC) Pilot Project in order to develop and spread new water supply models for consumers to believe and drink tap water through systematic water quality and quantity management combining ICT in the whole water supply process. The SWC pilot projects in Pa-ju city and Go-ryeong county were an opportunity to check the likelihood of the "smart water management" as the answer to future water management. It is needed to examine the necessity of smart water management introduction and nationwide SWC expansion in order to improve water welfare for people and resolve domestic & foreign water problems.