DOI QR코드

DOI QR Code

Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis

  • Received : 2020.08.03
  • Accepted : 2021.01.18
  • Published : 2021.04.25

Abstract

The steady growth in population has led to an enhanced water demand and immense pressure on water resources. Pharmaceutical residues (PRs) are unused or non-assimilated medicines found in water supplies that originate from the human and animal consumption of antibiotics, antipyretics, analgesics etc. These have been detected recently in sewage effluents, surface water, ground water and even in drinking water. Due to their toxicity and potential hazard to the environment, humans and aquatic life, PRs are now categorized as the emerging contaminants (ECs). India figures in the top five manufacturers of medicines in the world and every third pill consumed in the world is produced in India. Present day conventional wastewater treatment methods are ineffective and don't eliminate them completely. The use of nanotechnology via advanced oxidation processes (AOP) is one of the most effective methods for the removal of these PRs. Present study is aimed at reviewing the presence of various PRs in water supplies and also to describe the process of AOP to overcome their threat. This study is also very important in view of World Health Organization report confirming more than 30 million cases of COVID-19 worldwide. This will lead to an alleviated use of antibiotics, antipyretics etc. and their subsequent occurrence in water bodies. Need of the hour is to devise a proper treatment strategy and a decision thereof by the policymakers to overcome the possible threat to the environment and health of humans and aquatic life.

Keywords

Acknowledgement

Authors are highly thankful to the Ministry of Education (MoE), formerly Ministry of Human Resource Development (MHRD), Government of India New Delhi, for providing financial assistance during this research.

References

  1. Ahmad, A.L., Tan, L.S. and Shukor, S.A. (2008), "Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes", J. Hazard. Mater., 151(1), 71-77. https://doi.org/10.1016/j.jhazmat.2007.05.047
  2. Akhavan, O. (2009), "Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation", J. Colloid Interf. Sci., 336(1), 117-124. https://doi.org/10.1016/j.jcis.2009.03.018
  3. Alcamo, J., Henrichs, T. and Rosch, T. (2000), "World Water in 2025 - Global modeling and scenario analysis for the world commission on water for the 21st century", Report A0002, Center for Environmental Systems Research, University of Kassel, Kurt Wolters Strasse 3, 34109 Kassel, Germany.
  4. Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I., Surif, S. and Abdulghani, M. (2013), "The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia", Int. J. Environ. Anal. Chem., 93(3), 245-264. https://doi.org/10.1080/03067319.2011.592949
  5. Al-Rifai, J.H., Gabelish, C.L. and Schafer, A.I. (2007), "Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia", Chemosphere, 69(5), 803-815. https://doi.org/10.1016/j.chemosphere.2007.04.069
  6. Amin, M.T., Alazba, A.A. and Manzoor, U. (2014), "A review of removal of pollutants from water/wastewater using different types of nanomaterials", Adv. Mater. Sci. Eng., 2014. https://doi.org/10.1155/2014/825910
  7. Anjum, M., Miandad, R., Waqas, M., Gehany, F. and Barakat, M.A. (2016), "Remediation of wastewater using various nanomaterials", Arab. J. Chem., 12(8), 4897-4919. https://doi.org/10.1016/j.arabjc.2016.10.004
  8. Anjum, M., Oves, M., Kumar, R. and Barakat, M.A. (2017), "Fabrication of ZnO-ZnS@ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater", Int. Biodeterio. Biodegrad., 119, 66-77. https://doi.org/10.1016/j.ibiod.2016.10.018
  9. Antunes, S C., Freitas, R., Figueira, E., Goncalves, F. and Nunes, B. (2013), "Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum", Environ. Sci. Pollut. Res., 20(9), 6658-6666. https://doi.org/10.1007/s11356-013-1784-9
  10. Awfa, D., Ateia, M., Fujii, M., Johnson, M.S. and Yoshimura, C. (2018), "Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature", Water Res., 142, 26-45. https://doi.org/10.1016/j.watres.2018.05.036
  11. Awfa, D., Ateia, M., Fujii, M. and Yoshimura, C. (2019), "Novel magnetic carbon nanotube-TiO2 composites for solar light photocatalytic degradation of pharmaceuticals in the presence of natural organic matter", J. Water Process Eng., 31, 100836. https://doi.org/10.1016/j.jwpe.2019.100836
  12. Bagheri, H., Afkhami, A. and Noroozi, A. (2016), "Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review", Anal. Bioanal. Chem. Res., 3(1), 1-18. https://dx.doi.org/10.22036/abcr.2016.12655
  13. Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K.S. and Subedi, B. (2017), "A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies", Ecotoxicol. Environ. Safety, 137, 113-120. https://doi.org/10.1016/j.ecoenv.2016.11.014
  14. Bianchi, C.L., Sacchi, B., Pirola, C., Demartin, F., Cerrato, G., Morandi, S. and Capucci, V. (2017), "Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water", Environ. Sci. Pollut. Res., 24(14), 12646-12654. https://doi.org/10.1007/s11356-016-7781-z
  15. Blair, B.D. (2016), "Potential upstream strategies for the mitigation of pharmaceuticals in the aquatic environment: a brief review", Current Environ. Health Reports, 3(2), 153-160. https://doi.org/10.1007/s40572-016-0088-x
  16. Cabeza, Y., Candela, L., Ronen, D. and Teijon, G. (2012), "Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain)", J. Hazard. Mater., 239, 32-39. https://doi.org/10.1016/j.jhazmat.2012.07.032
  17. Calza, P., Sakkas, V.A., Medana, C., Baiocchi, C., Dimou, A., Pelizzetti, E. and Albanis, T. (2006), "Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions", Appl. Catal. B: Environ., 67(3-4), 197-205. https://doi.org/10.1016/j.apcatb.2006.04.021
  18. Candido, J.P., Andrade, S.J., Fonseca, A.L., Silva, F.S., Silva, M.R. and Kondo, M.M. (2016), "Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions", Environ. Sci. Pollut. Res., 23(19), 19911-19920. https://doi.org/10.1007/s11356-017-8623-3
  19. Carabin, A., Drogui, P. and Robert, D. (2015), "Photo-degradation of carbamazepine using TiO2 suspended photocatalysts", J. Taiwan Inst. Chem. Engrs., 54, 109-117. https://doi.org/10.1016/j.jtice.2015.03.006
  20. Chandrakar, R.K., Baghel, R.N., Chandra, V.K. and Chandra, B. (2015), "Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles", Superlatt. Microstruct., 86, 256-269. https://doi.org/10.1016/j.spmi.2015.07.043
  21. Chen, P., Liang, H.W., Lv, X.H., Zhu, H.Z., Yao, H.B. and Yu, S.H. (2011), "Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration", Acs Nano, 5(7), 5928-5935. https://doi.org/10.1021/nn201719g
  22. Chong, M.N., Jin, B., Chow, C.W. and Saint, C. (2010), "Recent developments in photocatalytic water treatment technology: a review", Water Res., 44(10), 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039
  23. Courtier, A., Cadiere, A. and Roig, B. (2019), "Human pharmaceuticals: Why and how to reduce their presence in the environment", Current Opinion Green Sustain. Chem., 15, 77-82. https://doi.org/10.1016/j.cogsc.2018.11.001
  24. Crini, G. and Lichtfouse, E. (2019), "Advantages and disadvantages of techniques used for wastewater treatment", Environ. Chem Lett., 17(1), 145-155. https://doi.org/10.1007/s10311-018-0785-9
  25. Cyna, B., Chagneau, G., Bablon, G. and Tanghe, N. (2002), "Two years of nanofiltration at the Mery-sur-Oise plant, France", Desalination, 147(1-3), 69-75. https://doi.org/10.1016/S0011-9164(02)00578-7
  26. Daghrir, R., Drogui, P. and Robert, D. (2013), "Modified TiO2 for environmental photocatalytic applications: a review", Indust. Eng. Chem. Res., 52(10), 3581-3599. https://doi.org/10.1021/ie303468t
  27. Daneshvar, N., Salari, D., Niaei, A., Rasoulifard, M.H. and Khataee, A.R. (2005), "Immobilization of TiO2 nanopowder on glass beads for the photocatalytic decolorization of an azo dye CI Direct Red 23", J. Environ. Sci. Health, Part A, 40(8), 1605- 1617. https://doi.org/10.1081/ESE-200060664
  28. Daniel, D., Dionisio, R., de Alkimin, G.D. and Nunes, B. (2019), "Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species", Environ. Sci. Pollut. Res., 26(4), 3320-3329. https://doi.org/10.1007/s11356-018-3788-y
  29. Daou, C., Rafqah, S., Najjar, F., Anane, H., Piram, A., Hamade, A., Briche, S. and Wong-Wah-Chung, P. (2020), "TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution", J. Photochem. Photobiol. A: Chem., 388, 112183. https://doi.org/10.1016/j.jphotochem.2019.112183
  30. Das, R., Sarkar, S., Chakraborty, S., Choi, H. and Bhattacharjee, C. (2014), "Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles", Indust. Eng. Chem. Res., 53(8), 3012-3020. https://doi.org/10.1021/ie403817z
  31. Das, S., Banerjee, S. and Sinha, T.P. (2016), "Structural and AC conductivity study of CdTe nanomaterials", Physica E: Low-dimens. Syst. Nanostruct., 78, 73-78. https://doi.org/10.1016/j.physe.2015.11.031
  32. Daughton, C.G. and Ternes, T.A. (1999), "Pharmaceuticals & personal care products in the environment: an emerging concern", Environ. Health Persp. Suppl., 107, 907-939. https://doi.org/10.1289/ehp.99107s6907
  33. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X. and He, Y. (2015), "An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures", Water Res., 79, 128-146. https://doi.org/10.1016/j.watres.2015.04.038
  34. Drosos, M., Ren, M. and Frimmel, F.H. (2015), "The effect of NOM to TiO2: interactions and photocatalytic behavior", Appl. Catal. B: Environ., 165, 328-334. https://doi.org/10.1016/j.apcatb.2014.10.017
  35. Eslami, A., Amini, M.M., Asadi, A., Safari, A.A. and Daglioglu, N. (2020), "Photocatalytic degradation of ibuprofen and naproxen in water over NS-TiO2 coating on polycarbonate: Process modeling and intermediates identification", Inorganic Chem. Commun., 115, 107888. https://doi.org/10.1016/j.inoche.2020.107888
  36. Fekadu, S., Alemayehu, E., Dewil, R. and Van der Bruggen, B. (2019), "Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge", Sci. Total Environ., 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072
  37. Feng, J., Hu, X., Yue, P.L., Zhu, H.Y. and Lu, G.Q. (2003), "Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst", Indust. Eng. Chem. Res., 42(10), 2058-2066. https://doi.org/10.1021/ie0207010
  38. Fick, J., Soderstrom, H., Lindberg, R.H., Phan, C., Tysklind, M. and Larsson, D.J. (2009), "Contamination of surface, ground, and drinking water from pharmaceutical production", Environ. Toxicol. Chem., 28(12), 2522-2527. https://doi.org/10.1897/09-073.1
  39. Foo, K.Y. and Hameed, B.H. (2010), "Decontamination of textile wastewater via TiO2/activated carbon composite materials", Adv. Colloid Interf. Sci., 159(2), 130-143. https://doi.org/10.1016/j.cis.2010.06.002
  40. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., Int. J., 3(2), 111-121. https://doi.org/10.12989/anr.2015.3.2.111
  41. Hejri, Z., Hejri, M., Omidvar, M. and Morshedi, S. (2020), "A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution", Adv. Nano Res., Int. J., 8(1), 1-11. https://doi.org/10.12989/anr.2020.8.1.001
  42. Hering, J.G., Waite, T.D., Luthy, R.G., Drewes, J.E. and Sedlak, D.L. (2013), "A changing framework for urban water systems", Environ. Sci. Technol., 47, 10721-10726. https://doi.org/10.1021/es4007096.
  43. Herrera, R.B.C., Kryshtab, T., Adame, J.A.A. and Kryvko, A. (2017), "ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient", Adv. Nano Res., Int. J., 5(3), 193-201. https://doi.org/10.12989/anr.2017.5.3.193
  44. Herrmann, J.M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal. Today, 53(1), 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
  45. Hlongwane, G.N., Sekoai, P.T., Meyyappan, M. and Moothi, K. (2019), "Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control", Sci. Total Environ., 656, 808-833. https://doi.org/10.1016/j.scitotenv.2018.11.257
  46. Hong, N.H. (2019), "Introduction to nanomaterials: basic properties, synthesis, and characterization", In: Nano-Sized Multifunctional Materials, Elsevier, pp. 1-19. https://doi.org/10.1016/B978-0-12-813934-9.00001-3
  47. Huang, H.C., Huang, G.L., Chen, H.L. and Lee, Y.D. (2006), "Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications", Thin Solid Films, 515(3), 1033-1037. https://doi.org/10.1016/j.tsf.2006.07.071
  48. ICRA Report on Indian Pharmaceutical Sector, Pharmaceutical Industry: Developments in India-Deloitte, Mckinsey Pharma Report 2020.
  49. Ivetic, T.B., Dimitrievska, M.R., Fincur, N.L., Dacanin, L.R., Guth, I.O., Abramovic, B.F. and Lukic-Petrovic, S.R. (2014), "Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation", Ceram. Int., 40(1), 1545-1552. https://doi.org/10.1016/j.ceramint.2013.07.041
  50. Jallouli, N., Elghniji, K., Trabelsi, H. and Ksibi, M. (2017), "Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation", Arab. J. Chem., 10, S3640-S3645. https://doi.org/10.1016/j.arabjc.2014.03.014
  51. Jallouli, N., Pastrana-Martinez, L.M., Ribeiro, A.R., Moreira, N.F., Faria, J.L., Hentati, O., Silva, A.M. and Ksibi, M. (2018), "Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system", Chem. Eng. J., 334, 976-984. https://doi.org/10.1016/j.cej.2017.10.045
  52. Jamal, A., Rahman, M.M., Khan, S.B., Faisal, M., Akhtar, K., Rub, M.A., Asiri, A.M. and Al-Youbi, A.O. (2012), "Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants", Appl. Surf. Sci., 261, 52-58. https://doi.org/10.1016/j.apsusc.2012.07.066
  53. Jones, O.A.H., Voulvoulis, N. and Lester, J.N. (2002), "Aquatic environmental assessment of the top 25 English prescription pharmaceuticals", Water Res., 36(20), 5013-5022. https://doi.org/10.1016/S0043-1354(02)00227-0
  54. Jung, C., Son, A., Her, N., Zoh, K.D., Cho, J. and Yoon, Y. (2015), "Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review", J. Indust. Eng. Chem., 27, 1-11. https://doi.org/10.1016/j.jiec.2014.12.035
  55. Kallummal, M. and Bugalya, K. (2012), "Trends in India's trade in pharmaceutical sector: Some insights", Center for WTO Studies Working Paper, 200(2).
  56. Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2014), "Titanium dioxide photocatalysis for pharmaceutical wastewater treatment", Environ. Chem. Lett., 12(1), 27-47. https://doi.org/10.1007/s10311-013-0428-0
  57. Kanakaraju, D., Motti, C.A., Glass, B.D. and Oelgemoller, M. (2015), "TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates", Chemosphere, 139, 579-588. https://doi.org/10.1016/j.chemosphere.2015.07.070
  58. Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2018), "Advanced oxidation process-mediated removal of pharmaceuticals from water: a review", J. Environ. Manage., 219, 189-207. https://doi.org/10.1016/j.jenvman.2018.04.103
  59. Khan, M.Y.A. and Tian, F. (2018), "Understanding the potential sources and environmental impacts of dissolved and suspended organic carbon in the diversified Ramganga River, Ganges Basin, India", Proceedings of the International Association of Hydrological Sciences, 379, 61-66. https://doi.org/10.5194/piahs-379-61-2018
  60. Khan, M.Y.A., Khan, B. and Chakrapani, G.J. (2016), "Assessment of spatial variations in water quality of Garra River at Shahjahanpur, Ganga Basin, India", Arab. J. Geosci., 9(8), 516. https://doi.org/10.1007/s12517-016-2551-2
  61. Khan, M.Y.A., Hu, H., Tian, F. and Wen, J. (2020a), "Monitoring the spatio-temporal impact of small tributaries on the hydrochemical characteristics of Ramganga River, Ganges Basin, India", Int. J. River Basin Manage., 18(2), 231-241. https://doi.org/10.1080/15715124.2019.1675677
  62. Khan, M.Y.A., ElKashouty, M. and Bob, M. (2020b), "Impact of rapid urbanization and tourism on the groundwater quality in Al Madinah city, Saudi Arabia: a monitoring and modeling approach", Arab. J. Geosci., 13(18), 1-22. https://doi.org/10.1007/s12517-020-05906-6
  63. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R. and Ramakrishna, S. (2012), "A review on nanomaterials for environmental remediation", Energy Environ. Sci., 5(8), 8075-8109. https://doi.org/10.1039/C2EE21818F
  64. Kitsiou, V., Zachariadis, G.A., Lambropoulou, D.A., Tsiplakides, D. and Poulios, I. (2018), "Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalysts", J. Environ. Chem. Eng., 6(2), 2409-2416. https://doi.org/10.1016/j.jece.2018.03.036
  65. Kuo, C.S., Lin, C.F. and Hong, P.K.A. (2015), "Photocatalytic degradation of methamphetamine by UV/TiO2-kinetics, intermediates, and products", Water Res., 74, 1-9. https://doi.org/10.1016/j.watres.2015.01.043
  66. Lai, W.W.P., Hsu, M.H. and Lin, A.Y.C. (2017), "The role of bicarbonate anions in methotrexate degradation via UV/TiO2: mechanisms, reactivity and increased toxicity", Water Res., 112, 157-166. https://doi.org/10.1016/j.watres.2017.01.040
  67. Lambropoulou, D., Evgenidou, E., Saliverou, V., Kosma, C. and Konstantinou, I. (2017), "Degradation of venlafaxine using TiO2/UV process: kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation", J. Hazard. Mater., 323, 513-526. https://doi.org/10.1016/j.jhazmat.2016.04.074
  68. Lee, C.M., Palaniandy, P. and Dahlan, I. (2017), "Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review", Environ. Earth Sci., 76(17), 611. https://doi.org/10.1007/s12665-017-6924-y
  69. Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., Int. J., 5(3), 215-230. https://doi.org/10.12989/anr.2017.5.3.215
  70. Leyva, E., Moctezuma, E., Lopez, M., Baines, K.M. and Zermeno, B. (2019), "Photocatalytic degradation of β-blockers in TiO2 with metoprolol as model compound. Intermediates and total reaction mechanism", Catal. Today, 323, 14-25. https://doi.org/10.1016/j.cattod.2018.08.007
  71. Lin, S.T., Thirumavalavan, M., Jiang, T.Y. and Lee, J.F. (2014), "Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes", Carbohydr. Polym., 105, 1-9. https://doi.org/10.1016/j.carbpol.2014.01.017
  72. Lin, T.Y., Hsu, Y.T., Lan, W.H., Huang, C.J., Chen, L.C., Huang, Y.H., Lin, J.C., Chang, K.J., Lin, W.J. and Huang, K.F. (2015), "Photocatalytic study of Zinc Oxide with bismuth doping prepared by spray pyrolysis", Adv. Nano Res., Int. J., 3(3), 123-131. https://doi.org/10.12989/anr.2015.3.3.123
  73. Liu, Y., Wang, X., Yang, F. and Yang, X. (2008), "Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films", Micropor. Mesopor. Mater., 114(1-3), 431-439. https://doi.org/10.1016/j.micromeso.2008.01.032
  74. Lu, F. and Astruc, D. (2020), "Nanocatalysts and other nanomaterials for water remediation from organic pollutants", Coordin. Chem. Rev., 408, 213180. https://doi.org/10.1016/j.ccr.2020.213180
  75. Mathis, J.E., Kidder, M.K., Li, Y., Zhang, J. and Paranthaman, M.P. (2016), "Controlled synthesis of mesoporous codoped titania nanoparticles and their photocatalytic activity", Adv. Nano Res., Int. J., 4(3), 157-165. https://doi.org/10.12989/anr.2016.4.3.157
  76. Mauter, M.S. and Elimelech, M. (2008), "Environmental applications of carbon-based nanomaterials", Environ. Sci. Technol., 42(16), 5843-5859. https://doi.org/10.1021/es8006904
  77. Miao, X.S., Koenig, B.G. and Metcalfe, C.D. (2002), "Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography-electrospray ionization tandem mass spectrometry", J. Chromatogr. A, 952(1-2), 139-147. https://doi.org/10.1016/S0021-9673(02)00088-2
  78. Mirzaei, A., Chen, Z., Haghighat, F. and Yerushalmi, L. (2016), "Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review", Sustain. Cities Soc., 27, 407-418. https://doi.org/10.1016/j.scs.2016.08.004
  79. Mondal, A., Mondal, A. and Mukherjee, D. (2015), "Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation", Adv. Nano Res., Int. J., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067
  80. Mourid, E.H., El Mersly, L., Benaziz, L., Rafqah, S. and Lakraimi, M. (2020), "Development of a new recyclable nanocomoposite LDH-TiO2 for the degradation of antibiotic Sulfamethoxazole under UVA radiation: an approach towards sunlight", J. Photochem. Photobiol. A: Chem., 396, 112530. https://doi.org/10.1016/j.jphotochem.2020.112530
  81. Mugunthan, E., Saidutta, M.B. and Jagadeeshbabu, P.E. (2018), "Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts", Environ. Nanotechnol. Monitor. Manage., 10, 322-330. https://doi.org/10.1016/j.enmm.2018.07.012
  82. Mutiyar, P.K. and Mittal, A.K. (2013), "Pharmaceuticals and Personal Care Products (PPCPs) Residues in Water Environment of India: A Neglected but Sensitive Issue", In: The 28th National Convention of Environmental Engineers and National Seminar on Hazardous Waste Management and Healthcare in India, March, pp. 9-10.
  83. Nguyen, T.P., Tran, Q.B., Ly, Q.V., Le, D.T., Tran, M.B., Ho, T.T.T., Nguyen, X.C., Shokouhimehr, M., Vo, D.V.N., Lam, S.S. and Do, H.T. (2020a), "Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study", Arab. J. Chem., 13(11), 8361-8371. https://doi.org/10.1016/j.arabjc.2020.05.023
  84. Nguyen, V.H., Tran, Q.B., Nguyen, X.C., Ho, T.T.T., Shokouhimehr, M., Vo, D.V.N., Lam, S.S., Nguyen, H.P., Hoang, C.T., Ly, Q.V. and Peng, W. (2020b), "Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater", Process Safe. Environ. Protect., 142, 229-237. https://doi.org/10.1016/j.psep.2020.05.041
  85. Nikolaou, A., Meric, S. and Fatta, D. (2007), "Occurrence patterns of pharmaceuticals in water and wastewater environments", Anal. Biochem., 387(4), 1225-1234. https://doi.org/10.1007/s00216-006-1035-8
  86. Pant, H.R., Kim, H.J., Joshi, M.K., Pant, B., Park, C.H., Kim, J.I., Hui, K.S. and Kim, C.S. (2014), "One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification", J. Hazard. Mater., 264, 25-33. https://doi.org/10.1016/j.jhazmat.2013.10.066
  87. Pavithra, K.G., Kumar, P.S., Rajan, P.S., Saravanan, A. and Naushad, M. (2017), "Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review", Korean J. Chem. Eng., 34(11), 2787-2805. https://doi.org/10.1007/s11814-017-0255-2
  88. Payan, A., Isari, A.A. and Gholizade, N. (2019), "Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@ functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies", Chem. Eng. J., 361, 1121-1141. https://doi.org/10.1016/j.cej.2018.12.118
  89. Pedrosa, M., Drazic, G., Tavares, P.B., Figueiredo, J.L. and Silva, A.M. (2019), "Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation", Chem. Eng. J., 369, 223-232. https://doi.org/10.1016/j.cej.2019.02.211
  90. Ponkshe, A. and Thakur, P. (2019), "Significant mineralization of beta blockers Propranolol and Atenolol by TiO2 induced photocatalysis", Mater. Today: Proceedings, 18, 1162-1175. https://doi.org/10.1016/j.matpr.2019.06.577
  91. Qu, X., Alvarez, P.J. and Li, Q. (2013), "Applications of nanotechnology in water and wastewater treatment", Water Res., 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
  92. Rabiet, M., Togola, A., Brissaud, F., Seidel, J.L., Budzinski, H. and Elbaz-Poulichet, F. (2006), "Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment", Environ. Sci. Technol., 40(17), 5282-5288. https://doi.org/10.1021/es060528p
  93. Rajabi, H.R., Karimi, F., Kazemdehdashti, H. and Kavoshi, L. (2018), "Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media", J. Photochem. Photobiol. B: Biol., 181, 98-105. https://doi.org/10.1016/j.jphotobiol.2018.02.016
  94. Rathoure, A.K. and Dhatwalia, V.K. (Eds.) (2016), "Toxicity and waste management using bioremediation", Eng. Sci. Ref. https://doi.org/10.4018/978-1-4666-9734-8
  95. Reddy, P.V.L., Kavitha, B., Reddy, P.A.K. and Kim, K.H. (2017), "TiO2-based photocatalytic disinfection of microbes in aqueous media: a review", Environ. Res., 154, 296-303. https://doi.org/10.1016/j.envres.2017.01.018
  96. Richardson, M.L. and Bowron, J.M. (1985), "The fate of pharmaceutical chemicals in the aquatic environment", J. Pharm. Pharmacol., 37(1), 1-12. https://doi.org/10.1111/j.2042-7158.1985.tb04922.x
  97. Robert, D. and Malato, S. (2002), "Solar photocatalysis: a clean process for water detoxification", Sci. Total Environ., 291(1-3), 85-97. https://doi.org/10.1016/S0048-9697(01)01094-4
  98. Roberts, P.H. and Thomas, K.V. (2006), "The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment", Sci. Total Environ., 356(1-3), 143-153. https://doi.org/10.1016/j.scitotenv.2005.04.031
  99. Rocher, V., Siaugue, J.M., Cabuil, V. and Bee, A. (2008), "Removal of organic dyes by magnetic alginate beads", Water Res., 42(4-5), 1290-1298. https://doi.org/10.1016/j.watres.2007.09.024
  100. Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A. and Bandala, E.R. (2017), "Treatment technologies for emerging contaminants in water: a review", Chem. Eng. J., 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106
  101. Romero, V., Gonzalez, O., Bayarri, B., Marco, P., Gimenez, J. and Esplugas, S. (2015), "Performance of different advanced oxidation technologies for the abatement of the beta-blocker metoprolol", Catal. Today, 240, 86-92. https://doi.org/10.1016/j.cattod.2014.03.060
  102. Safavi, B., Asadollahfardi, G. and khodadadi Darban, A. (2017), "Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles", Adv. Nano Res., Int. J., 5(1), 27. https://doi.org/10.12989/anr.2017.4.1.027
  103. Sajadian, Z.S., Hazrati, H. and Rostamizadeh, M. (2020), "Investigation of influence of nano H-ZSM-5 and NH 4-ZSM-5 zeolites on membrane fouling in semi batch MBR", Adv. Nano Res., Int. J., 8(2), 183-190. https://doi.org/10.12989/anr.2020.8.2.183
  104. Shah, A.H. and Rather, M.A. (2019), "Photo Catalytic Degradation of Pharmaceutical Drugs using TiO2 Nanoparticles.-A Review", J. Basic Appl. Eng. Res., 6(5), 327-331.
  105. Shah, A.H. and Rather, M.A. (2020), "Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method", Mater. Today: Proceedings. [In press] https://doi.org/10.1016/j.matpr.2020.10.199
  106. Sharma, S.K. and Sanghi, R. (Eds.) (2012), Advances in Water Treatment and Pollution Prevention, Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4204-8_1
  107. Smith, S.C. and Rodrigues, D.F. (2015), "Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications", Carbon, 91, 122-143. https://doi.org/10.1016/j.carbon.2015.04.043
  108. Solis-Casados, D.A., Escobar-Alarcon, L., Gomez-Olivan, L.M., Haro-Poniatowski, E. and Klimova, T. (2017), "Photodegradation of pharmaceutical drugs using Sn-modified TiO2 powders under visible light irradiation", Fuel, 198, 3-10. https://doi.org/10.1016/j.fuel.2017.01.059
  109. Stackelberg, P.E., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Henderson, A.K. and Reissman, D.B. (2004), "Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant", Sci. Total Environ., 329(1-3), 99-113. https://doi.org/10.1016/j.scitotenv.2004.03.015
  110. Strbac, D., Aggelopoulos, C.A., Strbac, G., Dimitropoulos, M., Novakovic, M., Ivetic, T. and Yannopoulos, S.N. (2018), "Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture", Process Safety Environ. Protect., 113, 174-183. https://doi.org/10.1016/j.psep.2017.10.007
  111. Subedi, B., Balakrishna, K., Sinha, R.K., Yamashita, N., Balasubramanian, V.G. and Kannan, K. (2015), "Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India", J. Environ. Chem. Eng., 3(4), 2882-2891. https://doi.org/10.1016/j.jece.2015.09.031
  112. Sur, U.K. (2014), "Biological green synthesis of gold and silver nanoparticles", Adv. Nano Res., Int. J., 2(3), 135-145. https://doi.org/10.12989/anr.2014.2.3.135
  113. Tepus, B., Simonic, M. and Petrinic, I. (2009), "Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes", J. Hazard. Mater., 170(2-3), 1210-1217. https://doi.org/10.1016/j.jhazmat.2009.05.105
  114. Thomas, K.V. and Hilton, M.J. (2004), "The occurrence of selected human pharmaceutical compounds in UK estuaries", Marine Pollut. Bull., 49(5-6), 436-444. https://doi.org/10.1016/j.marpolbul.2004.02.028
  115. Thomas, K.V. and Langford, K. (2007), "Occurrence of pharmaceuticals in the aqueous environment", Comprehens. Anal. Chem., 50, 337-359. https://doi.org/10.1016/S0166-526X(07)50010-3
  116. Tijani, J.O., Fatoba, O.O. and Petrik, L.F. (2013), "A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections", Water Air Soil Pollut., 224(11), 1770. https://doi.org/10.1007/s11270-013-1770-3
  117. Tong, A.Y., Braund, R., Warren, D.S. and Peake, B.M. (2012), "TiO2-assisted photodegradation of pharmaceuticals-a review", Central Eur. J. Chem., 10(4), 989-1027. https://doi.org/10.2478/s11532-012-0049-7
  118. Uheida, A., Mohamed, A., Belaqziz, M. and Nasser, W.S. (2019), "Photocatalytic degradation of Ibuprofen, Naproxen, and Cetirizine using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation", Separat. Purif. Technol., 212, 110-118. https://doi.org/10.1016/j.seppur.2018.11.030
  119. Van Doorslaer, X., Heynderickx, P.M., Demeestere, K., Debevere, K., Van Langenhove, H. and Dewulf, J. (2012), "TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study", Appl. Catal. B: Environ., 111, 150-156. https://doi.org/10.1016/j.apcatb.2011.09.029
  120. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. and Barcelo, D. (2012), "Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment", Sci. Total Environ., 430, 109-118. https://doi.org/10.1016/j.scitotenv.2012.04.055
  121. Villegas-Guzman, P., Silva-Agredo, J., Gonzalez-Gomez, D., Giraldo-Aguirre, A.L., Florez-Acosta, O. and Torres-Palma, R.A. (2015), "Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin", J. Environ. Sci. Health, Part A, 50(1), 40-48. https://doi.org/10.1080/10934529.2015.964606
  122. Vinu, R. and Madras, G. (2011), "Photocatalytic Degradation of Water Pollutants Using Nano-TiO2", In: Energy Efficiency and Renewable Energy through Nanotechnology, Springer, London, pp. 625-677. https://doi.org/10.1007/978-0-85729-638-2_19
  123. Walcarius, A. and Mercier, L. (2010), "Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants", J. Mater. Chem., 20(22), 4478-4511. https://doi.org/10.1039/B924316J
  124. Wu, L., Shamsuzzoha, M. and Ritchie, S.M.C. (2005), "Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water", J. Nanopart. Res., 7(4-5), 469-476. https://doi.org/10.1007/s11051-005-4271-5
  125. Wu, S., Zhang, L. and Chen, J. (2012), "Paracetamol in the environment and its degradation by microorganisms", Appl. Microbiol. Biotechnol., 96(4), 875-884. https://doi.org/10.1007/s00253-012-4414-4
  126. Yang, L., Liya, E.Y. and Ray, M.B. (2008), "Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis", Water Res., 42(13), 3480-3488. https://doi.org/10.1016/j.watres.2008.04.023
  127. Yu, F., Li, Y., Han, S. and Ma, J. (2016), "Adsorptive removal of antibiotics from aqueous solution using carbon materials", Chemosphere, 153, 365-385. https://doi.org/10.1016/j.chemosphere.2016.03.083
  128. Yusoff, A.H., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., Int. J., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001
  129. Zeferino, R.S., Pal, U., Reues, M.E.D.A. and Rosas, E.R. (2019), "Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles", Adv. Nano Res., Int. J., 7(1), 13-24. https://doi.org/10.12989/anr.2019.7.1.013
  130. Zhang, X., Wu, F., Wu, X., Chen, P. and Deng, N. (2008), "Photodegradation of acetaminophen in TiO2 suspended solution", J. Hazard. Mater., 157(2-3), 300-307. https://doi.org/10.1016/j.jhazmat.2007.12.098
  131. Zyoud, A.H., Zubi, A., Hejjawi, S., Zyoud, S.H., Helal, M.H., Zyoud, S.H., Qamhieh, N., Hajamohideen, A. and Hilal, H.S. (2020), "Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: Catalytic efficiency assessment for future prospects", J. Environ. Chem. Eng., 8(4), 104038. https://doi.org/10.1016/j.jece.2020.104038