Browse > Article

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Water Back-flushing Period  

Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University)
Park, Sung Woo (Dept. of Environmental Sciences & Biotechnology, Hallym University)
Publication Information
Membrane Journal / v.22, no.4, 2012 , pp. 243-250 More about this Journal
Abstract
The effect of water back-flushing period (filtration time, FT) was investigated in hybrid process of alumina microfiltration and photocatalyst for advanced drinking water treatment in this study, and compared with the previous studies with carbon microfiltration or alumina ultrafiltration membranes. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased as decreasing FT, which was same with the previous results with carbon microfiltration or alumina ultrafiltration membranes. The treatment efficiency of turbidity was high beyond 98.1%, and the effect of FT was not shown on treatment efficiency of turbidity, which was same with the previous result of carbon microfiltration. The treatment efficiency of organic matters was the highest value of 89.6 % at FT 8 min, which was a little higher than those of the previous results, and the effect of FT was not shown on treatment efficiency of organic matters.
Keywords
alumina membrane; photocatalyst; hybrid process; microfiltration; water back-flushing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 T. H. Bae and T. M. Tak, "Effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249, 1 (2005).   DOI   ScienceOn
2 R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001).   DOI   ScienceOn
3 K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005).   DOI   ScienceOn
4 J. Y. Park and G. H. Cho, "Effect of water back-flushing condition in hybrid water treatment process of carbon fiber microfiltration membrane and photocatalyst", Membrane Journal, 22, 216 (2012).
5 G. S. Cong and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 1. effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
6 J. Y. Park and G. S. Lee, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and ceramic microfiltration: effect of organic materials in water-back-flushing", Membrane Journal, 21, 72 (2011).
7 H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
8 H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006).   DOI   ScienceOn
9 H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_2$ photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted depositionmethod and their self-cleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003).
10 K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
11 R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004).   DOI   ScienceOn
12 H. C. Oh, "Photocatalytic degradation characteristics of organic matter by highly pure $TiO_2$ nanocrystals", Master Dissertation, Kangwon National Univ., Chuncheon, Korea (2006).
13 J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
14 C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).