Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.4.397

Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis  

Shah, Aarif Hussain (Department of Chemical Engineering, National Institute of Technology)
Rather, Mushtaq Ahmad (Department of Chemical Engineering, National Institute of Technology)
Publication Information
Advances in nano research / v.10, no.4, 2021 , pp. 397-414 More about this Journal
Abstract
The steady growth in population has led to an enhanced water demand and immense pressure on water resources. Pharmaceutical residues (PRs) are unused or non-assimilated medicines found in water supplies that originate from the human and animal consumption of antibiotics, antipyretics, analgesics etc. These have been detected recently in sewage effluents, surface water, ground water and even in drinking water. Due to their toxicity and potential hazard to the environment, humans and aquatic life, PRs are now categorized as the emerging contaminants (ECs). India figures in the top five manufacturers of medicines in the world and every third pill consumed in the world is produced in India. Present day conventional wastewater treatment methods are ineffective and don't eliminate them completely. The use of nanotechnology via advanced oxidation processes (AOP) is one of the most effective methods for the removal of these PRs. Present study is aimed at reviewing the presence of various PRs in water supplies and also to describe the process of AOP to overcome their threat. This study is also very important in view of World Health Organization report confirming more than 30 million cases of COVID-19 worldwide. This will lead to an alleviated use of antibiotics, antipyretics etc. and their subsequent occurrence in water bodies. Need of the hour is to devise a proper treatment strategy and a decision thereof by the policymakers to overcome the possible threat to the environment and health of humans and aquatic life.
Keywords
emerging contaminants; pharmaceutical residues; wastewater treatment; nanocatalysts; conventional methods; advanced oxidation process; photocatalyst;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Smith, S.C. and Rodrigues, D.F. (2015), "Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications", Carbon, 91, 122-143. https://doi.org/10.1016/j.carbon.2015.04.043   DOI
2 Solis-Casados, D.A., Escobar-Alarcon, L., Gomez-Olivan, L.M., Haro-Poniatowski, E. and Klimova, T. (2017), "Photodegradation of pharmaceutical drugs using Sn-modified TiO2 powders under visible light irradiation", Fuel, 198, 3-10. https://doi.org/10.1016/j.fuel.2017.01.059   DOI
3 Sharma, S.K. and Sanghi, R. (Eds.) (2012), Advances in Water Treatment and Pollution Prevention, Springer Science & Business Media. https://doi.org/10.1007/978-94-007-4204-8_1
4 Antunes, S C., Freitas, R., Figueira, E., Goncalves, F. and Nunes, B. (2013), "Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum", Environ. Sci. Pollut. Res., 20(9), 6658-6666. https://doi.org/10.1007/s11356-013-1784-9   DOI
5 Anjum, M., Oves, M., Kumar, R. and Barakat, M.A. (2017), "Fabrication of ZnO-ZnS@ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater", Int. Biodeterio. Biodegrad., 119, 66-77. https://doi.org/10.1016/j.ibiod.2016.10.018   DOI
6 Al-Rifai, J.H., Gabelish, C.L. and Schafer, A.I. (2007), "Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia", Chemosphere, 69(5), 803-815. https://doi.org/10.1016/j.chemosphere.2007.04.069   DOI
7 Amin, M.T., Alazba, A.A. and Manzoor, U. (2014), "A review of removal of pollutants from water/wastewater using different types of nanomaterials", Adv. Mater. Sci. Eng., 2014. https://doi.org/10.1155/2014/825910   DOI
8 Anjum, M., Miandad, R., Waqas, M., Gehany, F. and Barakat, M.A. (2016), "Remediation of wastewater using various nanomaterials", Arab. J. Chem., 12(8), 4897-4919. https://doi.org/10.1016/j.arabjc.2016.10.004   DOI
9 Akhavan, O. (2009), "Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation", J. Colloid Interf. Sci., 336(1), 117-124. https://doi.org/10.1016/j.jcis.2009.03.018   DOI
10 Daniel, D., Dionisio, R., de Alkimin, G.D. and Nunes, B. (2019), "Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species", Environ. Sci. Pollut. Res., 26(4), 3320-3329. https://doi.org/10.1007/s11356-018-3788-y   DOI
11 Daou, C., Rafqah, S., Najjar, F., Anane, H., Piram, A., Hamade, A., Briche, S. and Wong-Wah-Chung, P. (2020), "TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution", J. Photochem. Photobiol. A: Chem., 388, 112183. https://doi.org/10.1016/j.jphotochem.2019.112183   DOI
12 Das, R., Sarkar, S., Chakraborty, S., Choi, H. and Bhattacharjee, C. (2014), "Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles", Indust. Eng. Chem. Res., 53(8), 3012-3020. https://doi.org/10.1021/ie403817z   DOI
13 Das, S., Banerjee, S. and Sinha, T.P. (2016), "Structural and AC conductivity study of CdTe nanomaterials", Physica E: Low-dimens. Syst. Nanostruct., 78, 73-78. https://doi.org/10.1016/j.physe.2015.11.031   DOI
14 Yusoff, A.H., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., Int. J., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001   DOI
15 Leyva, E., Moctezuma, E., Lopez, M., Baines, K.M. and Zermeno, B. (2019), "Photocatalytic degradation of β-blockers in TiO2 with metoprolol as model compound. Intermediates and total reaction mechanism", Catal. Today, 323, 14-25. https://doi.org/10.1016/j.cattod.2018.08.007   DOI
16 Qu, X., Alvarez, P.J. and Li, Q. (2013), "Applications of nanotechnology in water and wastewater treatment", Water Res., 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058   DOI
17 Zeferino, R.S., Pal, U., Reues, M.E.D.A. and Rosas, E.R. (2019), "Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles", Adv. Nano Res., Int. J., 7(1), 13-24. https://doi.org/10.12989/anr.2019.7.1.013   DOI
18 Zhang, X., Wu, F., Wu, X., Chen, P. and Deng, N. (2008), "Photodegradation of acetaminophen in TiO2 suspended solution", J. Hazard. Mater., 157(2-3), 300-307. https://doi.org/10.1016/j.jhazmat.2007.12.098   DOI
19 Zyoud, A.H., Zubi, A., Hejjawi, S., Zyoud, S.H., Helal, M.H., Zyoud, S.H., Qamhieh, N., Hajamohideen, A. and Hilal, H.S. (2020), "Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: Catalytic efficiency assessment for future prospects", J. Environ. Chem. Eng., 8(4), 104038. https://doi.org/10.1016/j.jece.2020.104038   DOI
20 Lai, W.W.P., Hsu, M.H. and Lin, A.Y.C. (2017), "The role of bicarbonate anions in methotrexate degradation via UV/TiO2: mechanisms, reactivity and increased toxicity", Water Res., 112, 157-166. https://doi.org/10.1016/j.watres.2017.01.040   DOI
21 Lin, S.T., Thirumavalavan, M., Jiang, T.Y. and Lee, J.F. (2014), "Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes", Carbohydr. Polym., 105, 1-9. https://doi.org/10.1016/j.carbpol.2014.01.017   DOI
22 Mondal, A., Mondal, A. and Mukherjee, D. (2015), "Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation", Adv. Nano Res., Int. J., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067   DOI
23 Reddy, P.V.L., Kavitha, B., Reddy, P.A.K. and Kim, K.H. (2017), "TiO2-based photocatalytic disinfection of microbes in aqueous media: a review", Environ. Res., 154, 296-303. https://doi.org/10.1016/j.envres.2017.01.018   DOI
24 Lambropoulou, D., Evgenidou, E., Saliverou, V., Kosma, C. and Konstantinou, I. (2017), "Degradation of venlafaxine using TiO2/UV process: kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation", J. Hazard. Mater., 323, 513-526. https://doi.org/10.1016/j.jhazmat.2016.04.074   DOI
25 Lee, C.M., Palaniandy, P. and Dahlan, I. (2017), "Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review", Environ. Earth Sci., 76(17), 611. https://doi.org/10.1007/s12665-017-6924-y   DOI
26 Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., Int. J., 5(3), 215-230. https://doi.org/10.12989/anr.2017.5.3.215   DOI
27 Lin, T.Y., Hsu, Y.T., Lan, W.H., Huang, C.J., Chen, L.C., Huang, Y.H., Lin, J.C., Chang, K.J., Lin, W.J. and Huang, K.F. (2015), "Photocatalytic study of Zinc Oxide with bismuth doping prepared by spray pyrolysis", Adv. Nano Res., Int. J., 3(3), 123-131. https://doi.org/10.12989/anr.2015.3.3.123   DOI
28 Drosos, M., Ren, M. and Frimmel, F.H. (2015), "The effect of NOM to TiO2: interactions and photocatalytic behavior", Appl. Catal. B: Environ., 165, 328-334. https://doi.org/10.1016/j.apcatb.2014.10.017   DOI
29 Daughton, C.G. and Ternes, T.A. (1999), "Pharmaceuticals & personal care products in the environment: an emerging concern", Environ. Health Persp. Suppl., 107, 907-939. https://doi.org/10.1289/ehp.99107s6907   DOI
30 Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X. and He, Y. (2015), "An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures", Water Res., 79, 128-146. https://doi.org/10.1016/j.watres.2015.04.038   DOI
31 Sur, U.K. (2014), "Biological green synthesis of gold and silver nanoparticles", Adv. Nano Res., Int. J., 2(3), 135-145. https://doi.org/10.12989/anr.2014.2.3.135   DOI
32 Stackelberg, P.E., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Henderson, A.K. and Reissman, D.B. (2004), "Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant", Sci. Total Environ., 329(1-3), 99-113. https://doi.org/10.1016/j.scitotenv.2004.03.015   DOI
33 Strbac, D., Aggelopoulos, C.A., Strbac, G., Dimitropoulos, M., Novakovic, M., Ivetic, T. and Yannopoulos, S.N. (2018), "Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture", Process Safety Environ. Protect., 113, 174-183. https://doi.org/10.1016/j.psep.2017.10.007   DOI
34 Subedi, B., Balakrishna, K., Sinha, R.K., Yamashita, N., Balasubramanian, V.G. and Kannan, K. (2015), "Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India", J. Environ. Chem. Eng., 3(4), 2882-2891. https://doi.org/10.1016/j.jece.2015.09.031   DOI
35 Tepus, B., Simonic, M. and Petrinic, I. (2009), "Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes", J. Hazard. Mater., 170(2-3), 1210-1217. https://doi.org/10.1016/j.jhazmat.2009.05.105   DOI
36 Thomas, K.V. and Hilton, M.J. (2004), "The occurrence of selected human pharmaceutical compounds in UK estuaries", Marine Pollut. Bull., 49(5-6), 436-444. https://doi.org/10.1016/j.marpolbul.2004.02.028   DOI
37 Pant, H.R., Kim, H.J., Joshi, M.K., Pant, B., Park, C.H., Kim, J.I., Hui, K.S. and Kim, C.S. (2014), "One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification", J. Hazard. Mater., 264, 25-33. https://doi.org/10.1016/j.jhazmat.2013.10.066   DOI
38 Nguyen, T.P., Tran, Q.B., Ly, Q.V., Le, D.T., Tran, M.B., Ho, T.T.T., Nguyen, X.C., Shokouhimehr, M., Vo, D.V.N., Lam, S.S. and Do, H.T. (2020a), "Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study", Arab. J. Chem., 13(11), 8361-8371. https://doi.org/10.1016/j.arabjc.2020.05.023   DOI
39 Nguyen, V.H., Tran, Q.B., Nguyen, X.C., Ho, T.T.T., Shokouhimehr, M., Vo, D.V.N., Lam, S.S., Nguyen, H.P., Hoang, C.T., Ly, Q.V. and Peng, W. (2020b), "Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater", Process Safe. Environ. Protect., 142, 229-237. https://doi.org/10.1016/j.psep.2020.05.041   DOI
40 Nikolaou, A., Meric, S. and Fatta, D. (2007), "Occurrence patterns of pharmaceuticals in water and wastewater environments", Anal. Biochem., 387(4), 1225-1234. https://doi.org/10.1007/s00216-006-1035-8   DOI
41 Pavithra, K.G., Kumar, P.S., Rajan, P.S., Saravanan, A. and Naushad, M. (2017), "Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review", Korean J. Chem. Eng., 34(11), 2787-2805. https://doi.org/10.1007/s11814-017-0255-2   DOI
42 Eslami, A., Amini, M.M., Asadi, A., Safari, A.A. and Daglioglu, N. (2020), "Photocatalytic degradation of ibuprofen and naproxen in water over NS-TiO2 coating on polycarbonate: Process modeling and intermediates identification", Inorganic Chem. Commun., 115, 107888. https://doi.org/10.1016/j.inoche.2020.107888   DOI
43 Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., Int. J., 3(2), 111-121. https://doi.org/10.12989/anr.2015.3.2.111   DOI
44 Jallouli, N., Pastrana-Martinez, L.M., Ribeiro, A.R., Moreira, N.F., Faria, J.L., Hentati, O., Silva, A.M. and Ksibi, M. (2018), "Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system", Chem. Eng. J., 334, 976-984. https://doi.org/10.1016/j.cej.2017.10.045   DOI
45 Fekadu, S., Alemayehu, E., Dewil, R. and Van der Bruggen, B. (2019), "Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge", Sci. Total Environ., 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072   DOI
46 Shah, A.H. and Rather, M.A. (2019), "Photo Catalytic Degradation of Pharmaceutical Drugs using TiO2 Nanoparticles.-A Review", J. Basic Appl. Eng. Res., 6(5), 327-331.
47 Crini, G. and Lichtfouse, E. (2019), "Advantages and disadvantages of techniques used for wastewater treatment", Environ. Chem Lett., 17(1), 145-155. https://doi.org/10.1007/s10311-018-0785-9   DOI
48 Awfa, D., Ateia, M., Fujii, M., Johnson, M.S. and Yoshimura, C. (2018), "Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature", Water Res., 142, 26-45. https://doi.org/10.1016/j.watres.2018.05.036   DOI
49 Hong, N.H. (2019), "Introduction to nanomaterials: basic properties, synthesis, and characterization", In: Nano-Sized Multifunctional Materials, Elsevier, pp. 1-19. https://doi.org/10.1016/B978-0-12-813934-9.00001-3
50 Sajadian, Z.S., Hazrati, H. and Rostamizadeh, M. (2020), "Investigation of influence of nano H-ZSM-5 and NH 4-ZSM-5 zeolites on membrane fouling in semi batch MBR", Adv. Nano Res., Int. J., 8(2), 183-190. https://doi.org/10.12989/anr.2020.8.2.183   DOI
51 Feng, J., Hu, X., Yue, P.L., Zhu, H.Y. and Lu, G.Q. (2003), "Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst", Indust. Eng. Chem. Res., 42(10), 2058-2066. https://doi.org/10.1021/ie0207010   DOI
52 Fick, J., Soderstrom, H., Lindberg, R.H., Phan, C., Tysklind, M. and Larsson, D.J. (2009), "Contamination of surface, ground, and drinking water from pharmaceutical production", Environ. Toxicol. Chem., 28(12), 2522-2527. https://doi.org/10.1897/09-073.1   DOI
53 Foo, K.Y. and Hameed, B.H. (2010), "Decontamination of textile wastewater via TiO2/activated carbon composite materials", Adv. Colloid Interf. Sci., 159(2), 130-143. https://doi.org/10.1016/j.cis.2010.06.002   DOI
54 Hejri, Z., Hejri, M., Omidvar, M. and Morshedi, S. (2020), "A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution", Adv. Nano Res., Int. J., 8(1), 1-11. https://doi.org/10.12989/anr.2020.8.1.001   DOI
55 Hering, J.G., Waite, T.D., Luthy, R.G., Drewes, J.E. and Sedlak, D.L. (2013), "A changing framework for urban water systems", Environ. Sci. Technol., 47, 10721-10726. https://doi.org/10.1021/es4007096.   DOI
56 Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K.S. and Subedi, B. (2017), "A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies", Ecotoxicol. Environ. Safety, 137, 113-120. https://doi.org/10.1016/j.ecoenv.2016.11.014   DOI
57 Bianchi, C.L., Sacchi, B., Pirola, C., Demartin, F., Cerrato, G., Morandi, S. and Capucci, V. (2017), "Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water", Environ. Sci. Pollut. Res., 24(14), 12646-12654. https://doi.org/10.1007/s11356-016-7781-z   DOI
58 Tijani, J.O., Fatoba, O.O. and Petrik, L.F. (2013), "A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections", Water Air Soil Pollut., 224(11), 1770. https://doi.org/10.1007/s11270-013-1770-3   DOI
59 Awfa, D., Ateia, M., Fujii, M. and Yoshimura, C. (2019), "Novel magnetic carbon nanotube-TiO2 composites for solar light photocatalytic degradation of pharmaceuticals in the presence of natural organic matter", J. Water Process Eng., 31, 100836. https://doi.org/10.1016/j.jwpe.2019.100836   DOI
60 Bagheri, H., Afkhami, A. and Noroozi, A. (2016), "Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review", Anal. Bioanal. Chem. Res., 3(1), 1-18. https://dx.doi.org/10.22036/abcr.2016.12655   DOI
61 Blair, B.D. (2016), "Potential upstream strategies for the mitigation of pharmaceuticals in the aquatic environment: a brief review", Current Environ. Health Reports, 3(2), 153-160. https://doi.org/10.1007/s40572-016-0088-x   DOI
62 Calza, P., Sakkas, V.A., Medana, C., Baiocchi, C., Dimou, A., Pelizzetti, E. and Albanis, T. (2006), "Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions", Appl. Catal. B: Environ., 67(3-4), 197-205. https://doi.org/10.1016/j.apcatb.2006.04.021   DOI
63 Cabeza, Y., Candela, L., Ronen, D. and Teijon, G. (2012), "Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain)", J. Hazard. Mater., 239, 32-39. https://doi.org/10.1016/j.jhazmat.2012.07.032   DOI
64 Huang, H.C., Huang, G.L., Chen, H.L. and Lee, Y.D. (2006), "Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications", Thin Solid Films, 515(3), 1033-1037. https://doi.org/10.1016/j.tsf.2006.07.071   DOI
65 ICRA Report on Indian Pharmaceutical Sector, Pharmaceutical Industry: Developments in India-Deloitte, Mckinsey Pharma Report 2020.
66 Ivetic, T.B., Dimitrievska, M.R., Fincur, N.L., Dacanin, L.R., Guth, I.O., Abramovic, B.F. and Lukic-Petrovic, S.R. (2014), "Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation", Ceram. Int., 40(1), 1545-1552. https://doi.org/10.1016/j.ceramint.2013.07.041   DOI
67 Jung, C., Son, A., Her, N., Zoh, K.D., Cho, J. and Yoon, Y. (2015), "Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review", J. Indust. Eng. Chem., 27, 1-11. https://doi.org/10.1016/j.jiec.2014.12.035   DOI
68 Pedrosa, M., Drazic, G., Tavares, P.B., Figueiredo, J.L. and Silva, A.M. (2019), "Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation", Chem. Eng. J., 369, 223-232. https://doi.org/10.1016/j.cej.2019.02.211   DOI
69 Payan, A., Isari, A.A. and Gholizade, N. (2019), "Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@ functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies", Chem. Eng. J., 361, 1121-1141. https://doi.org/10.1016/j.cej.2018.12.118   DOI
70 Candido, J.P., Andrade, S.J., Fonseca, A.L., Silva, F.S., Silva, M.R. and Kondo, M.M. (2016), "Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions", Environ. Sci. Pollut. Res., 23(19), 19911-19920. https://doi.org/10.1007/s11356-017-8623-3   DOI
71 Liu, Y., Wang, X., Yang, F. and Yang, X. (2008), "Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films", Micropor. Mesopor. Mater., 114(1-3), 431-439. https://doi.org/10.1016/j.micromeso.2008.01.032   DOI
72 Lu, F. and Astruc, D. (2020), "Nanocatalysts and other nanomaterials for water remediation from organic pollutants", Coordin. Chem. Rev., 408, 213180. https://doi.org/10.1016/j.ccr.2020.213180   DOI
73 Mathis, J.E., Kidder, M.K., Li, Y., Zhang, J. and Paranthaman, M.P. (2016), "Controlled synthesis of mesoporous codoped titania nanoparticles and their photocatalytic activity", Adv. Nano Res., Int. J., 4(3), 157-165. https://doi.org/10.12989/anr.2016.4.3.157   DOI
74 Mauter, M.S. and Elimelech, M. (2008), "Environmental applications of carbon-based nanomaterials", Environ. Sci. Technol., 42(16), 5843-5859. https://doi.org/10.1021/es8006904   DOI
75 Mourid, E.H., El Mersly, L., Benaziz, L., Rafqah, S. and Lakraimi, M. (2020), "Development of a new recyclable nanocomoposite LDH-TiO2 for the degradation of antibiotic Sulfamethoxazole under UVA radiation: an approach towards sunlight", J. Photochem. Photobiol. A: Chem., 396, 112530. https://doi.org/10.1016/j.jphotochem.2020.112530   DOI
76 Jallouli, N., Elghniji, K., Trabelsi, H. and Ksibi, M. (2017), "Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation", Arab. J. Chem., 10, S3640-S3645. https://doi.org/10.1016/j.arabjc.2014.03.014   DOI
77 Jamal, A., Rahman, M.M., Khan, S.B., Faisal, M., Akhtar, K., Rub, M.A., Asiri, A.M. and Al-Youbi, A.O. (2012), "Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants", Appl. Surf. Sci., 261, 52-58. https://doi.org/10.1016/j.apsusc.2012.07.066   DOI
78 Jones, O.A.H., Voulvoulis, N. and Lester, J.N. (2002), "Aquatic environmental assessment of the top 25 English prescription pharmaceuticals", Water Res., 36(20), 5013-5022. https://doi.org/10.1016/S0043-1354(02)00227-0   DOI
79 Miao, X.S., Koenig, B.G. and Metcalfe, C.D. (2002), "Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography-electrospray ionization tandem mass spectrometry", J. Chromatogr. A, 952(1-2), 139-147. https://doi.org/10.1016/S0021-9673(02)00088-2   DOI
80 Mirzaei, A., Chen, Z., Haghighat, F. and Yerushalmi, L. (2016), "Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review", Sustain. Cities Soc., 27, 407-418. https://doi.org/10.1016/j.scs.2016.08.004   DOI
81 Mugunthan, E., Saidutta, M.B. and Jagadeeshbabu, P.E. (2018), "Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts", Environ. Nanotechnol. Monitor. Manage., 10, 322-330. https://doi.org/10.1016/j.enmm.2018.07.012   DOI
82 Van Doorslaer, X., Heynderickx, P.M., Demeestere, K., Debevere, K., Van Langenhove, H. and Dewulf, J. (2012), "TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study", Appl. Catal. B: Environ., 111, 150-156. https://doi.org/10.1016/j.apcatb.2011.09.029   DOI
83 Herrera, R.B.C., Kryshtab, T., Adame, J.A.A. and Kryvko, A. (2017), "ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient", Adv. Nano Res., Int. J., 5(3), 193-201. https://doi.org/10.12989/anr.2017.5.3.193   DOI
84 Herrmann, J.M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal. Today, 53(1), 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8   DOI
85 Hlongwane, G.N., Sekoai, P.T., Meyyappan, M. and Moothi, K. (2019), "Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control", Sci. Total Environ., 656, 808-833. https://doi.org/10.1016/j.scitotenv.2018.11.257   DOI
86 Khan, M.Y.A. and Tian, F. (2018), "Understanding the potential sources and environmental impacts of dissolved and suspended organic carbon in the diversified Ramganga River, Ganges Basin, India", Proceedings of the International Association of Hydrological Sciences, 379, 61-66. https://doi.org/10.5194/piahs-379-61-2018   DOI
87 Mutiyar, P.K. and Mittal, A.K. (2013), "Pharmaceuticals and Personal Care Products (PPCPs) Residues in Water Environment of India: A Neglected but Sensitive Issue", In: The 28th National Convention of Environmental Engineers and National Seminar on Hazardous Waste Management and Healthcare in India, March, pp. 9-10.
88 Tong, A.Y., Braund, R., Warren, D.S. and Peake, B.M. (2012), "TiO2-assisted photodegradation of pharmaceuticals-a review", Central Eur. J. Chem., 10(4), 989-1027. https://doi.org/10.2478/s11532-012-0049-7   DOI
89 Uheida, A., Mohamed, A., Belaqziz, M. and Nasser, W.S. (2019), "Photocatalytic degradation of Ibuprofen, Naproxen, and Cetirizine using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation", Separat. Purif. Technol., 212, 110-118. https://doi.org/10.1016/j.seppur.2018.11.030   DOI
90 Ponkshe, A. and Thakur, P. (2019), "Significant mineralization of beta blockers Propranolol and Atenolol by TiO2 induced photocatalysis", Mater. Today: Proceedings, 18, 1162-1175. https://doi.org/10.1016/j.matpr.2019.06.577   DOI
91 Chen, P., Liang, H.W., Lv, X.H., Zhu, H.Z., Yao, H.B. and Yu, S.H. (2011), "Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration", Acs Nano, 5(7), 5928-5935. https://doi.org/10.1021/nn201719g   DOI
92 Courtier, A., Cadiere, A. and Roig, B. (2019), "Human pharmaceuticals: Why and how to reduce their presence in the environment", Current Opinion Green Sustain. Chem., 15, 77-82. https://doi.org/10.1016/j.cogsc.2018.11.001   DOI
93 Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. and Barcelo, D. (2012), "Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment", Sci. Total Environ., 430, 109-118. https://doi.org/10.1016/j.scitotenv.2012.04.055   DOI
94 Vinu, R. and Madras, G. (2011), "Photocatalytic Degradation of Water Pollutants Using Nano-TiO2", In: Energy Efficiency and Renewable Energy through Nanotechnology, Springer, London, pp. 625-677. https://doi.org/10.1007/978-0-85729-638-2_19
95 Carabin, A., Drogui, P. and Robert, D. (2015), "Photo-degradation of carbamazepine using TiO2 suspended photocatalysts", J. Taiwan Inst. Chem. Engrs., 54, 109-117. https://doi.org/10.1016/j.jtice.2015.03.006   DOI
96 Chandrakar, R.K., Baghel, R.N., Chandra, V.K. and Chandra, B. (2015), "Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles", Superlatt. Microstruct., 86, 256-269. https://doi.org/10.1016/j.spmi.2015.07.043   DOI
97 Chong, M.N., Jin, B., Chow, C.W. and Saint, C. (2010), "Recent developments in photocatalytic water treatment technology: a review", Water Res., 44(10), 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039   DOI
98 Cyna, B., Chagneau, G., Bablon, G. and Tanghe, N. (2002), "Two years of nanofiltration at the Mery-sur-Oise plant, France", Desalination, 147(1-3), 69-75. https://doi.org/10.1016/S0011-9164(02)00578-7   DOI
99 Daghrir, R., Drogui, P. and Robert, D. (2013), "Modified TiO2 for environmental photocatalytic applications: a review", Indust. Eng. Chem. Res., 52(10), 3581-3599. https://doi.org/10.1021/ie303468t   DOI
100 Daneshvar, N., Salari, D., Niaei, A., Rasoulifard, M.H. and Khataee, A.R. (2005), "Immobilization of TiO2 nanopowder on glass beads for the photocatalytic decolorization of an azo dye CI Direct Red 23", J. Environ. Sci. Health, Part A, 40(8), 1605- 1617. https://doi.org/10.1081/ESE-200060664   DOI
101 Kanakaraju, D., Motti, C.A., Glass, B.D. and Oelgemoller, M. (2015), "TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates", Chemosphere, 139, 579-588. https://doi.org/10.1016/j.chemosphere.2015.07.070   DOI
102 Walcarius, A. and Mercier, L. (2010), "Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants", J. Mater. Chem., 20(22), 4478-4511. https://doi.org/10.1039/B924316J   DOI
103 Kallummal, M. and Bugalya, K. (2012), "Trends in India's trade in pharmaceutical sector: Some insights", Center for WTO Studies Working Paper, 200(2).
104 Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2014), "Titanium dioxide photocatalysis for pharmaceutical wastewater treatment", Environ. Chem. Lett., 12(1), 27-47. https://doi.org/10.1007/s10311-013-0428-0   DOI
105 Rabiet, M., Togola, A., Brissaud, F., Seidel, J.L., Budzinski, H. and Elbaz-Poulichet, F. (2006), "Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment", Environ. Sci. Technol., 40(17), 5282-5288. https://doi.org/10.1021/es060528p   DOI
106 Rajabi, H.R., Karimi, F., Kazemdehdashti, H. and Kavoshi, L. (2018), "Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media", J. Photochem. Photobiol. B: Biol., 181, 98-105. https://doi.org/10.1016/j.jphotobiol.2018.02.016   DOI
107 Rathoure, A.K. and Dhatwalia, V.K. (Eds.) (2016), "Toxicity and waste management using bioremediation", Eng. Sci. Ref. https://doi.org/10.4018/978-1-4666-9734-8
108 Richardson, M.L. and Bowron, J.M. (1985), "The fate of pharmaceutical chemicals in the aquatic environment", J. Pharm. Pharmacol., 37(1), 1-12. https://doi.org/10.1111/j.2042-7158.1985.tb04922.x   DOI
109 Wu, L., Shamsuzzoha, M. and Ritchie, S.M.C. (2005), "Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water", J. Nanopart. Res., 7(4-5), 469-476. https://doi.org/10.1007/s11051-005-4271-5   DOI
110 Wu, S., Zhang, L. and Chen, J. (2012), "Paracetamol in the environment and its degradation by microorganisms", Appl. Microbiol. Biotechnol., 96(4), 875-884. https://doi.org/10.1007/s00253-012-4414-4   DOI
111 Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2018), "Advanced oxidation process-mediated removal of pharmaceuticals from water: a review", J. Environ. Manage., 219, 189-207. https://doi.org/10.1016/j.jenvman.2018.04.103   DOI
112 Khan, M.Y.A., Khan, B. and Chakrapani, G.J. (2016), "Assessment of spatial variations in water quality of Garra River at Shahjahanpur, Ganga Basin, India", Arab. J. Geosci., 9(8), 516. https://doi.org/10.1007/s12517-016-2551-2   DOI
113 Khan, M.Y.A., Hu, H., Tian, F. and Wen, J. (2020a), "Monitoring the spatio-temporal impact of small tributaries on the hydrochemical characteristics of Ramganga River, Ganges Basin, India", Int. J. River Basin Manage., 18(2), 231-241. https://doi.org/10.1080/15715124.2019.1675677   DOI
114 Kuo, C.S., Lin, C.F. and Hong, P.K.A. (2015), "Photocatalytic degradation of methamphetamine by UV/TiO2-kinetics, intermediates, and products", Water Res., 74, 1-9. https://doi.org/10.1016/j.watres.2015.01.043   DOI
115 Khan, M.Y.A., ElKashouty, M. and Bob, M. (2020b), "Impact of rapid urbanization and tourism on the groundwater quality in Al Madinah city, Saudi Arabia: a monitoring and modeling approach", Arab. J. Geosci., 13(18), 1-22. https://doi.org/10.1007/s12517-020-05906-6   DOI
116 Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R. and Ramakrishna, S. (2012), "A review on nanomaterials for environmental remediation", Energy Environ. Sci., 5(8), 8075-8109. https://doi.org/10.1039/C2EE21818F   DOI
117 Kitsiou, V., Zachariadis, G.A., Lambropoulou, D.A., Tsiplakides, D. and Poulios, I. (2018), "Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalysts", J. Environ. Chem. Eng., 6(2), 2409-2416. https://doi.org/10.1016/j.jece.2018.03.036   DOI
118 Robert, D. and Malato, S. (2002), "Solar photocatalysis: a clean process for water detoxification", Sci. Total Environ., 291(1-3), 85-97. https://doi.org/10.1016/S0048-9697(01)01094-4   DOI
119 Thomas, K.V. and Langford, K. (2007), "Occurrence of pharmaceuticals in the aqueous environment", Comprehens. Anal. Chem., 50, 337-359. https://doi.org/10.1016/S0166-526X(07)50010-3   DOI
120 Villegas-Guzman, P., Silva-Agredo, J., Gonzalez-Gomez, D., Giraldo-Aguirre, A.L., Florez-Acosta, O. and Torres-Palma, R.A. (2015), "Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin", J. Environ. Sci. Health, Part A, 50(1), 40-48. https://doi.org/10.1080/10934529.2015.964606   DOI
121 Roberts, P.H. and Thomas, K.V. (2006), "The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment", Sci. Total Environ., 356(1-3), 143-153. https://doi.org/10.1016/j.scitotenv.2005.04.031   DOI
122 Rocher, V., Siaugue, J.M., Cabuil, V. and Bee, A. (2008), "Removal of organic dyes by magnetic alginate beads", Water Res., 42(4-5), 1290-1298. https://doi.org/10.1016/j.watres.2007.09.024   DOI
123 Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A. and Bandala, E.R. (2017), "Treatment technologies for emerging contaminants in water: a review", Chem. Eng. J., 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106   DOI
124 Safavi, B., Asadollahfardi, G. and khodadadi Darban, A. (2017), "Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles", Adv. Nano Res., Int. J., 5(1), 27. https://doi.org/10.12989/anr.2017.4.1.027   DOI
125 Alcamo, J., Henrichs, T. and Rosch, T. (2000), "World Water in 2025 - Global modeling and scenario analysis for the world commission on water for the 21st century", Report A0002, Center for Environmental Systems Research, University of Kassel, Kurt Wolters Strasse 3, 34109 Kassel, Germany.
126 Shah, A.H. and Rather, M.A. (2020), "Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method", Mater. Today: Proceedings. [In press] https://doi.org/10.1016/j.matpr.2020.10.199   DOI
127 Yang, L., Liya, E.Y. and Ray, M.B. (2008), "Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis", Water Res., 42(13), 3480-3488. https://doi.org/10.1016/j.watres.2008.04.023   DOI
128 Romero, V., Gonzalez, O., Bayarri, B., Marco, P., Gimenez, J. and Esplugas, S. (2015), "Performance of different advanced oxidation technologies for the abatement of the beta-blocker metoprolol", Catal. Today, 240, 86-92. https://doi.org/10.1016/j.cattod.2014.03.060   DOI
129 Yu, F., Li, Y., Han, S. and Ma, J. (2016), "Adsorptive removal of antibiotics from aqueous solution using carbon materials", Chemosphere, 153, 365-385. https://doi.org/10.1016/j.chemosphere.2016.03.083   DOI
130 Ahmad, A.L., Tan, L.S. and Shukor, S.A. (2008), "Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes", J. Hazard. Mater., 151(1), 71-77. https://doi.org/10.1016/j.jhazmat.2007.05.047   DOI
131 Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I., Surif, S. and Abdulghani, M. (2013), "The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia", Int. J. Environ. Anal. Chem., 93(3), 245-264. https://doi.org/10.1080/03067319.2011.592949   DOI