• Title/Summary/Keyword: Advanced Oxidation Processes

Search Result 147, Processing Time 0.021 seconds

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C.;Feng, C.Y.;Matsuura, T.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.181-200
    • /
    • 2012
  • At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Occurrence and removals of micropollutants in water environment

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • Micropollutants are often discharged to surface waters through untreated wastewater from sewage treatment plants and wastewater treatment plants. The presence of micropollutants in surface waters is a serious concern because surface water is usually provided to water treatment plants (WTP) to produce drinking water. Many micropollutants can withstand conventional WTP systems and stay in tap water. In particular, pharmaceuticals and endocrine disruptors are examples of micropollutants that are detected at the drinking water, ppb, or even ppb level. A variety of techniques and processes, especially advanced oxidation processes, have been applied to remove micropollutants from water to control drinking water contamination. This paper reviews recent researches on the occurrence and removal of micropollutants in the aquatic environments and during water treatment processes.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.

A Study on Inactivation of Pathogenic Bacteria for Nutrient Solution Recycling Using Advanced Oxidation Processes

  • Jang, Gwan-Soon;Nam, Yi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.489-496
    • /
    • 2017
  • This study was conducted to test the applicability of hydroxy radical reactor system, which applied advanced oxidation processes, to sterilize pathogenic bacteria for nutrient solution recycling in closed hydroponics. Removal efficiency was tested on 25 L of nutrient solution maxed with 10 mL culture solution of bacteria, E. coli, and R. solanacearum in a pilot tank. The testing conditions included various levels of hydroxy radicals resulting from air flow rates of 40, 80, and $120L\;min^{-1}$, and 12 hours processing time. The removal of bacteria, E. coli, and R. solanacearum by hydroxy radical in nutrient solution was significantly increased with an increase in the flow rate of the air from $40L\;min^{-1}$ to $120L\;min^{-1}$. The optimum removal efficiency was achieved at an air flow rate of $120L\;min^{-1}$ for 2 hours treatment. There were no significant differences in removal efficiency among bacteria, E. coli, and R. solanacearum for tested level and time of hydroxy radical. These results verified the efficiency of hydroxy radical in removing the pathogenic bacteria and the applicability of hydroxy radical reactor system in the field.

Eveluation of Comparable Removal Efficiency of Organics and Color for the Dyeing Wastewater by Fenton Oxidation and Ozonation (펜톤산화와 오존산화 조합에 따른 염색폐수의 유기물질 및 색도 처리효율 비교 평가에 관한 연구)

  • Kim, Sun Hee;Lee, Sang Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.778-784
    • /
    • 2004
  • Dyeing wastewater contains recalcitrant organics which can not be easily treated by conventional biological treatment. Therefore it has to be treated by other advanced oxidation process in order to remove COD and Color more efficiently. Fenton oxidation process is one of the most commonly applied processes in removal of COD and color for the dyeing wastewater. However it increase the treatment cost and the production of sludge by the use of the excessive chemical reagent. Ozonation is not suitable in Single treatment process because it is not effective in organics removal compared with Color removal. The purpose of this research in order to evaluate the comparable removal efficiency of COD and color by the combination of advanced oxidation processes for the dyeing wastewater. The sequential treatment processes of Fenton process and ozonation was more effective to remove organics and color than ozonation and Fenton process. The result of Fenton process for the pretreatment presented as the 81% removal of organics whereas ozonation process for the pretreatent presented as the 22.1% removal of organics. The removal of colour was higher as 81.3% for the ozonation as the pretreatment than 77.7% for the Fenton process as the pretreatment.

Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater (난분해성 산업폐수 처리를 위한 고도산화기술)

  • Kim, Min Sik;Lee, Ki-Myeong;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Leaching Mechanism and Modelling of U$O_2$ Pellets (U$O_2$ Pellet의 침출거동 및 Modelling)

  • Chang, Kil-Sang;Chun, Kwan-Sik;Park, Hyun-Soo;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.155-164
    • /
    • 1988
  • A rate equation for UO$_2$ pellet leaching has been derived and compared with some experimental results. The leach rate model comprises the processes of oxygen penetration into UO$_2$ pellets and the dissolution and transport of oxidized UO$_2$ depending on the penetration depth of oxygen. The model may be analyzed with two regions of transient and steady state behaviors, which should depend on the initial oxidation state of pellets. Also this model can be utilized in the analyses of general leach processes if the oxidation reaction of UO$_2$ is replaced with similar mechanism of those processes.

  • PDF