• Title/Summary/Keyword: Advanced Model

Search Result 6,400, Processing Time 0.035 seconds

Experimental and numerical investigations of near-field underwater explosions

  • Lee, Seunggyu;Cho, Junghee;Lee, Chaemin;Cho, Seongpil
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.395-406
    • /
    • 2021
  • Near-field underwater explosion (UNDEX) phenomena were investigated by experiments and numerical simulations. The UNDEX experiments were performed in a water tank using a ship-like model. One kilogram of TNT, one of the most widely used military high explosives, was used for the experiments. Numerical simulations were performed under the same conditions as in the experiments using the commercial software LS-DYNA. Underwater pressures, accelerations, velocities, and strains by shock waves were measured at multiple locations. Further, the bubble pulsation period and the whipping deformations of the ship-like model were explored. The experimental results are presented and examined through comparison with the results obtained from widely used empirical equations and numerical simulations.

Adaptive Input-Output Linearization Technique of Interior Permanent Magnet Synchronous Motor with Specified Output Dynamic Performance

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Moon, Gun-Woo;Lee, Dae-Sik;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.58-66
    • /
    • 1996
  • An adaptive input-output linearization technique of an interior permanent magnet synchronous motor with a specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and the magnitude of flux linkage can be estimated with the current dynamic model and state observer. Using these estimated parameters, the linearizing control inputs are calculated. With these control inputs, the input-output linearization is performed and the load torque is estimated. The adaptation laws are derived by the Popov's hyperstability theory and the positivity concept. The robustness and the output dynamic performance of the proposed control scheme are verified through the computer simulations.

  • PDF

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

Biodegradation of toluene vapor by evaporative cooler model based biofilter

  • Vikrant, Kumar;Nagar, Harshil;Anand, Raja;Sharma, Anjney;Lee, Sang-Hun;Giri, Balendu Shekher;Kim, Ki-Hyun;Singh, Ram Sharan
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.57-64
    • /
    • 2018
  • The biodegradation of toluene vapor was investigated using a new type of biofilter equipped with a laboratory-scale evaporative cooler model packed with wood wool fibers (area: $360cm^2$). For the purpose of this study, the biofilter system was inoculated with Pseudomonas sp. RSST (MG 279053). The performance of this biofilter, assessed in terms of toluene removal efficiency (and elimination capacity), was as high as 99 % at a loading rate of $6g/h{\cdot}m^2$. The toluene removal efficiency decreased in an exponential manner with the increase in the loading rate. The cooler model-based biofilter was able to remove more than 99 % of toluene using Pseudomonas sp. RSST (MG 279053) as an effective inoculum. This biofilter is designed to operate under batch conditions for the removal of toluene in confined environments (e.g., automotive plants, boiler rooms in manufacturing facilities, and offshore drilling platforms).

Development and Verification for Flight Model of CubeSat LINK (큐브위성 LINK 비행모델 개발 및 설계 검증)

  • Kim, Jongbum;Jung, Youeyun;Lim, Yeerang;Bang, Hyochoong;Marin, Mikael
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.114-123
    • /
    • 2017
  • Little Intelligent Nanosatellite of KAIST(LINK) is a 2U-size CubeSat which is developed by Aerospace Systems & Control Lab.(ASCL) of KAIST as a part of the international cooperation project QB50. The objective of the QB50 project is to carry out atmospheric research within the lower thermosphere and ionosphere and CubeSats are planned to be deployed at the International Space Station(ISS) from the first quarter of 2017. To implement this objective, a flight model(FM) of LINK has been successfully developed and the design and performance of the satellite have been verified by performing environment and function tests in accordance with acceptance requirement level. This paper describes the development of flight model and the results of vibration and thermal vacuum test.

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

Object-oriented model management support system

  • Park, Sung-Joo;Kwon, O-Byung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.42-48
    • /
    • 1990
  • Increasing concerns about model management system lead to studies of user friendliness and model executions. This paper presents model as object's method based on the Object-Oriented Concepts which makes it possible to represent model's operation and enables general decision makers to identify and select more appropriate models. This capability reduces the semantic gap between decision maker and model builder. This view is also able to execute models by way of automatic Ada code generation and specific LP formulation for LINDO. A prototype system is implemented in Pascal.

  • PDF

A Database Model for Intelligent Peripheral of Advanced Intelligent Network (차세대 지능망의 지능형 정보 제공 시스템을 위한 데이터베이스 모델)

  • Lee, Jae-Ho
    • Journal of The Korean Association of Information Education
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • In this paper we present database model for Intelligent Peripheral (IP) of Advanced Intelligent Network (AIN). The new model is developed through four phase. (1) An information of AIN IP is classified that would be stored in AIN IP database as specialized resources, service. schema and system information. (2) The modeling criteria are developed that would be used to model information classified. (3) Object-oriented concepts are used in modelifl8 classified information according to modeling criteria captured. (4) Methods applied to developed model are grouped, and active-based mechnisms such as trigger and constraints are developed. These selected methods and attributes are encapsulated into objects. Consequently they compose an active object-oriented AIN IP database model.

  • PDF

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.