• Title/Summary/Keyword: Advanced Manufacturing Industry

Search Result 289, Processing Time 0.03 seconds

Study on the Radial Stress Considering Mechanical Characteristics of Substrate in Wound Rolls (롤투롤 와인딩 시스템에서 소재 특성을 고려한 반경 방향 응력에 대한 연구)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-119
    • /
    • 2016
  • Winding is one of the major processes in roll-to-roll systems. Taper tension profile in a winding determines the distribution of stress in the radial direction, i.e., the radial stress in the wound rolls. Maximum radial stress is major cause of material defect, and this study has been actively proceeded. Traditional models of radial stress model were focused on flexible and light substrate. In this study, we developed an advanced radial stress model including effects of both these parameters(weight and stiffness) on the radial stress. The accuracy of the developed model was verified through FEM(Finite Element Method) analysis. FEM result of maximum radial stress value corresponds to 99 % in comparison to result with the model. From this study, the material defects does not occur when the steel winding. And steel industry can be applied to improve the winding process.

An Effect of Compressive Residual Stress on a High Temperature Fatigue Crack Propagation Behavior of The Shot-peened Spring Steel (압축잔류응력이 스프링강의 고온환경 피로크랙 진전거동에 미치는 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-124
    • /
    • 2002
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$) was investigated with considering fracture mechanics. So, we can obtain followings. (1) Compressive residual stress is decreased in high temperature, that is, with increasing temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa\sqrt{m}$. The fatigue crack growth rate is increased with increasing temperature. The fatigue life is decreased with increasing temperature. (3) The dependence of temperature and compressive residual stress on the parameters C and m in Paris' law formed the formulas such as equations (3),(4),(5),(6),(7),(8),(9),(10). (4) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF

Characteristics of High Temperature Fatigue Fracture in Spring Steels after Shot Peening (쇼트피닝 가공한 스프링강의 고온 피로 파괴 특성에 관한 연구)

  • Park, Keyung-Dong;Shin, Yeong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.1-6
    • /
    • 2006
  • The lightness of components that was required in automobile and machinery industry requires high strength of components. In particular, manufacturing process and new materials development for solving the fatigue facture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9)by shot-peening on fatigue crack growth characteristics in high temperature($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$)was investigated with considering fracture mechanics. So, we can obtaint the followings. (1) Compressive residual stress is decreased with increasing the test temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa{\sqrt{m}}$. (3) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

Practical Insights that Designer Can Contribute to Corporate Social Value Management; through Changes in Samsung

  • Park, Junsang;Nam, Wonsuk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.90-100
    • /
    • 2020
  • Our overall society circulates in line with the economical situations characterized by production and consumption and companies play the role of providing products and services, thus taking very significant responsibilities for the socioeconomical and cultural aspects in society. Therefore, when designers attempt to think of a way to enable companies and society to share their values and propose specific concepts and visualize outcomes, it is very critical to be able to understand economical philosophy and management strategies that interconnect companies with society and seek out proper design approaches. Recently, the world's enterprise and management culture tend to connect products and services provided by companies through chains of social values. Based on the abovementioned shift in the management paradigm, the researcher investigates and analyzes actual cases of attempts by Samsung Electronics to achieve its social impacts and studies actual roles and approaches of in-house designers with creativity and insights of humanity with regard to these attempts. Each case is selected from various fields such as the company's products and service development, business systems, culture, and external strategies and the ultimate goal is to learn about actual insights and approaches of designers to make contributions to the company's management with social impacts. Especially, humanity and creative thinking of many designers working in the manufacturing industry can have significant contributions to achieving its management with social impacts and effects of sustainable management.

Design of a C-based Independent Motion Controller using CAD&CAM (CAD&CAM을 활용한 C기반 독립형 모션 제어기 설계)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.105-110
    • /
    • 2016
  • Recently, as to changes in the paradigm of domestic manufacturing CNC industry, the application of advanced technologies in machine tools are actively being pursued. IT in responsible for controlling it is the most important part in the field of CNC. The biggest lack of the necessary expertise in the field of motion control in CNC is coding G-Code in setting adjust coordinate directly and convert it through expensive foreign s/w rather than using windows language in PC based controller. In this paper, We implemented G-Code convert program that is change various type of CAD data to G-Code data and CAD/CAM application program and developed exclusive motion controller which is to run a robot directly using changed data.

ACOUSTIC EMISSION CHARACTERISTICS OF STRESS CORROSION CRACKS IN A TYPE 304 STAINLESS STEEL TUBE

  • HWANG, WOONGGI;BAE, SEUNGGI;KIM, JAESEONG;KANG, SUNGSIK;KWAG, NOGWON;LEE, BOYOUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.454-460
    • /
    • 2015
  • Acoustic emission (AE) is one of the promising methods for detecting the formation of stress corrosion cracks (SCCs) in laboratory tests. This method has the advantage of online inspection. Some studies have been conducted to investigate the characteristics of AE parameters during SCC propagation. However, it is difficult to classify the distinct features of SCC behavior. Because the previous studies were performed on slow strain rate test or compact tension specimens, it is difficult to make certain correlations between AE signals and actual SCC behavior in real tube-type specimens. In this study, the specimen was a AISI 304 stainless steel tube widely applied in the nuclear industry, and an accelerated test was conducted at high temperature and pressure with a corrosive environmental condition. The study result indicated that intense AE signals were mainly detected in the elastic deformation region, and a good correlation was observed between AE activity and crack growth. By contrast, the behavior of accumulated counts was divided into four regions. According to the waveform analysis, a specific waveform pattern was observed during SCC development. It is suggested that AE can be used to detect and monitor SCC initiation and propagation in actual tubes.

Research Trends of Food Chain Transfer of Nanomaterials in Freshwater and Marine Ecosystems (담수 및 해양생태계에서 나노물질의 먹이사슬전이 연구추세)

  • Chae, Yooeun;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.683-690
    • /
    • 2014
  • Nanomaterials are used in a range of fields, including industry, medicine, aerospace, and manufacturing, due to their unique and useful properties. In recent years, nanotechnology has developed rapidly, and the amount of nanomaterials used in various fields has increased consistently. As a result, nanomaterials are released into the aquatic and soil ecosystem, posing potential risks to organisms and environment. These materials can enter the cells and may cause serious damage to organisms. Furthermore, they can be transferred through trophic levels and food web, thereby leading to bioconcentration and biomagnification. In this study, we analyzed the trends in research on food chain transfer of nanomaterials and investigated the techniques used in the research. Although many studies have been underway, there is a need for further advanced studies on higher trophic levels and complex microcosm and mesocosm. Furthermore, study topics should be expanded to include various types of nanomaterials and varied species and trophic levels.

Development of Rapid Tooling Technology for Shoe Mold and Its Applications (신발 금형의 쾌속제작기술 개발 및 그 적용에 관한 연구)

  • Chung, Sung-Il;Im, Yong-Gwan;Jeong, Hae-Do;Jeong, Du-Su;Bae, Tae-Yong;Lee, Seok-Woo;Choi, Han-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1371-1379
    • /
    • 2003
  • RP&M (Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, because the production cycle is getting shorter owing to various needs of the consumer. In this paper, rapid tooling technology is applied to the casting process. The casting process has the ability to reflect complicated shapes in one process. But it has not been widely used to make a die and mold because of the poor surface quality caused by air bubbles on the surface of the casting product. In this study, the porous casting mold is fabricated from a mixture of plaster and water-soluble binder. The porous casting mold can improve the characteristics of casting products with the help of the vacuum sealed casting process. The vacuum sealed casting process is an advanced technology that removes the air bubbles between the porous casting mould and the liquid metal, thus making the surface of the casting product finer. The purpose of this paper is to develop a high quality shoe mold using porous casting mold and to apply the RP&M technology to the shoe industry.

A Study on methodology of physical Fabrication & reorganization of Epidermis in Space Design - Focused on reorganization of Epidermis, Fabrication - (공간디자인에서 디지털 표피 재 조직화, 물리적 구현 방법 연구 - 표피 재 조직화, 가공 중심으로 -)

  • Park, Jeong-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.150-161
    • /
    • 2008
  • It requires more close cooperation process and mediator for smooth communication in this industry structure where design and engineers are separated. The database of design integrates separate system and helps connection between organizations. The application category is utilized variously from formation to operation. Architectures addressed in this content as Frank Gehry and Nox are making differentiated design on the base of 3d digital methodology and using it widely from generation to fabrication. Especially they got to be free from the generative limit as it became available to analyse, digital surface organization, and realize the complex system form. Now more integrated and delicate works got to be affordable owing to various kinds of improved CNC, RP(rapid-prototype) machines, and architecture hardwares. With a linkage of software now at their disposal, architects can create a digital model of a building and all of its design elements, and in turn use this 3d information to construct actual building components using machines driven by CNC and other advanced manufacturing techniques. Digital technologies are enabling a direct correlation between what design and construction, thus bringing to the forefront the issue of the significance of information, the production, communication, application, and control of digital information in the industrial system. The central requirement is the clear, reliable, and consistent exchange of information among all parties involved in creating a given project.

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF