• 제목/요약/키워드: Advance angle

검색결과 144건 처리시간 0.026초

선미형상을 고려한 천수역에서의 조종성능에 관한 연구 (A Study on the Manoeuvrability as Function of Stern Hull Form in Shallow Water)

  • 이성욱
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.552-557
    • /
    • 2015
  • 본 연구에서는 선미형상을 고려한 조종성능을 심수역 뿐만 아니라 천수역에 대해서 수치 시뮬레이션을 통해 검토하였다. 선미형상을 나타내는 파라메터 중 $C_{wa}$를 미소(${\pm}2%$)하게 변화시킴으로써 각 수역에서의 침로안정성, 선회 및 지그재그 성능이 어떤 변화를 보이고 그 경향이 어떻게 변화하는 지를 검토하였다. 선박의 조종성능 관점에서 흘수 대 수심의 비(=d/H)가 0.5 부근에서의 조종성에 큰 변화를 가져오는 중요 지점임을 알 수 있었고, 비대선(VLCC, 탱커 등)과 세장선(컨테이너)의 경우 선미형상의 변화에 따라 조종성능의 변화 정도가 많은 차이를 가질 수 있음을 알 수 있었다. 또한, $C_{wa}$를 감소(U형에 근접)시키면 선회운동에 있어서 advance 및 tactical diameter가 증가하고, 지그재그 운동에서는 track reach는 증가하지만 각 overshoot angle들은 감소한다. 이와 반대로, $C_{wa}$를 증가(V형에 근접)시키면 선회운동에 있어서 advance 및 tactical diameter는 감소, 지그재그 운동에서는 track reach는 감소, 각 overshoot angle 들은 증가함을 알 수 있었다.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.

SRM의 정밀속도제어를 위한 순시스위칭각 제어방식 (Instantaneous Switching-Angle Control Scheme for Precise Speed Control of an SRM)

  • 안진우;오석규;황영문
    • 전력전자학회논문지
    • /
    • 제2권3호
    • /
    • pp.20-25
    • /
    • 1997
  • SRM은 많은 장점으로 인해 각종 산업분야에 적용을 검토하고 있다. 그러나 토오크리플과 소음이 교류전동기보다 상대적으로 높은 단점이 있다. SRM은 상전류파형이 동작특성과 토오크리플발생에 큰 영향을 미친다. 본 논문에서는 토오크리플을 줄이고 정밀한 속도제어를 위해 순시도통각제어와 PLK제어시스템을 이용하였다. PLL의 위상검출기는 도통각제어에, 루우프필터의 출력은 순시 인가전압의 제어에 각각 도입하여 속응성을 높이고 토오크리플을 줄일 수 있도록 하였다. 실험을 통하여 정밀한 속도제어와 토오크리플 저감특성을 확인할 수 있었다.

  • PDF

Phase Advance Control to Reduce Torque Ripple of Brush-less DC Motor According to Winding Connection, Wye and Delta

  • Lee, Tae-Yong;Song, Jun-Young;Kim, Jaehong;Kim, Yong-Jae;Jung, Sang-Yong;Je, Jung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2201-2208
    • /
    • 2014
  • In this research, the characteristics of Brush-less DC (BLDC) motor in accordance with winding connection method, both Y-connection and D -connection, has been identified with design methodology simply. BLDC motor has been designed for both winding connections, and their torque analysis has been performed considering ideal current source analysis and voltage source analysis with 6-step control. In addition, to reduce torque ripple of BLDC motor, caused by coil inductance, on voltage source analysis with 6-step control, we have proposed suitable control method which is Phase Advance Control. It is verified that the torque ripple has been decreased by virtue of phase advance control, advancing and widening conduction angle of switching, via performance analysis by Finite Element Analysis.

타각과 선속에 따른 선회권의 변화-실습선 가야호- (Variation of the Turning Circle by the Rudder Angle and the Ship's Speed-Mainly on the Training Ship KAYA-)

  • 김민석;신현옥;강경미;김민선
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.156-164
    • /
    • 2005
  • The size of the ship's turning circle is influenced by various factors, such as block coefficient, underwater side shape, rudder area ratio, draft, trim and Froude's number. Most of them are already fixed on departure from a port. However, the ship's speed and the rudder angle are controllable factors which operations are able to change optionally during sailing. The DGPS measured the turning circles according to the ship's speed and the rudder angle. The maximum advances by slow and full ahead were 302m and 311m, and the maximum transfers were 460m and 452m, respectively. There occurs almost no difference in size of the turning circle by variation of the ship's speeds. When the rudder angles were changed to $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$, the maximum advances were 447m, 271m and 202m, and then also the maximum transfers 657m, 426m and 285m, respectively. The diameter of the tuning circle was decreased exponentially when the rudder angle was increased. The maneuverability was better when the direction of turning and propulsion of propeller are in the opposite direction rather than in the same one togetherm. The distance of the maximum transfer was always bigger than that of the maximum advance.

3D imaging and 3D display based on digital holography

  • Matoba, Osamu
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 창립 20주년기념 특별학술발표회
    • /
    • pp.133-134
    • /
    • 2009
  • We have presented our approach to build a 3D display system based on digital holography. For wide viewing angle, we have presented several techniques such as measurement, time-sharing display, and coherent amplification. These techniques can advance the wavefront 3D display system to next stage.

  • PDF

치과용 세라믹 임플란트 지대주의 기계적 특성 및 절단면 평가 (Mechanical Properties and Cross-sectional Surface Evaluation of Dental Ceramic Abutment)

  • 황준호;권성민;최성기;성미애;이규복
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The purpose of this study is to assess the mechanical properties of the ceramic abutment with washer. In this study, ceramic abutment were used, tested with $30^{\circ}$ compression load, shear fatigue, adaptation accuracy test(rotation angle, contact interval), removal torque force test, torsional breaking force test. The $30^{\circ}$ compression load was 729 N, the shear fatigue load was 275 N, adaptation accuracy test of rotation angle was within $3^{\circ}$, contact interval within $10{\mu}m$, and removal torque force test value is $18.88N{\cdot}cm$, torsional breaking force test value is $35.52N{\cdot}cm$. Ceramic abutment with a washer fitted have sufficient mechanical strength and may be substituted for titanium abutment.

실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구 (SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure)

  • 박승범;윤팔주;선우명호
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

개선된 전압제어를 이용한 BLDC 전동기의 토크맥동저감 (Reduction of Torque Ripple in a BLDC Motor Using an Improved Voltage Control)

  • 송정현;장진석;김병택
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.145-150
    • /
    • 2010
  • This paper deals with reduction of torque ripple in a brushless DC motor with input voltage control. The commutation torque ripple can be controlled with varying input voltage, but cogging torque is independent on it. So, in this paper a strategy for minimizing torque ripple is proposed by offsetting the cogging torque with deliberate voltage control. The optimal condition is determined with variable voltage levels and advance angles. As results, it is shown that the method causes 63% decrease of torque ripple.