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Abstract – In this research, the characteristics of Brush-less DC (BLDC) motor in accordance with 
winding connection method, both Y-connection and D -connection, has been identified with design 
methodology simply. BLDC motor has been designed for both winding connections, and their torque 
analysis has been performed considering ideal current source analysis and voltage source analysis with 
6-step control. In addition, to reduce torque ripple of BLDC motor, caused by coil inductance, on 
voltage source analysis with 6-step control, we have proposed suitable control method which is Phase 
Advance Control. It is verified that the torque ripple has been decreased by virtue of phase advance 
control, advancing and widening conduction angle of switching, via performance analysis by Finite 
Element Analysis.  
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1. Introduction 
 
Brush-less DC (BLDC) motor guarantees extraordinary 

performances of efficiency, power density, and various 
speed range capability [1]. Owing to these characteristics 
and reasonable cost, BLDC motor is applied in various 
industrial fields such as appliances, communications, 
tractions, and even servomotor with assistance of simple 
operating system.  

Since BLDC motor is controlled by semiconductor 
switching device instead of brush and commutator, it has 
distinctive structure of stator with armature winding and 
rotor with permanent magnets (PMs) compared to the 
general DC motor [2-4]. As a result, it has advantages on 
giving variations to the structure. Thus, it is possible to 
optimize the structure of BLDC motor for various purposes 
such as size minimization, flattening, and etc. [4]. BLDC 
motor has a decided advantage over speed variance because 
of smaller inertia than general DC motor. Moreover, BLDC 
motor can operate at high speed region owing to the 
absence of a commutator and brush which can cause a 
problem on mechanical friction or commutation, etc. Also, 
it is easy to protect against heat since winding is located at 
stator, not rotor. It leads to have an advantage on producing 
maximum output torque of BLDC motor compared with 
one of conventional DC motor which has an armature 
current limit due to avoiding demagnetization of PMs. In 

addition, it generates higher power density about 15% 
than Permanent Magnet Synchronous Motor (PMSM). 
The reason for this is Root Mean Square (RMS) value of 
BLDC Back-Electro Motive Force (BEMF), trapezoidal 
waveform, is larger than one of PMSM BEMF, sinusoidal 
waveform [5]. 

To implement an electric rectification, it is essential to 
adopt semiconductors on actuation circuit for switching 
phase currents. For this reason, the research on topology 
of actuation circuit for BLDC motor is being carried out 
[3, 6]. 

In this paper, the design of BLDC motor has been 
performed according to winding connection, “Y-connection, 
2-phase excitation system” and “Δ-connection, 3-phase 
excitation system”, respectively. In addition, it is accom-
plished that ideal current source analysis and voltage 
source analysis via designed models considering both 
winding connections, mentioned above, and their torque 
analysis by Finite Element Analysis (FEA). Finally, the 
control method, phase advance control, has been introduced 
for reduction of torque ripple caused by coil inductance in 
real driving circumstance.  

 
 

2. BLDC Motor and Control Method  
 

2.1 Governing equation for BLDC motor 
 
For reference, the conventional BLDC 3-phase voltage 

equation can be represented as follow: 
 

 abc
abc s abc s abc

diV R i L e
dt

= + +   (1) 

†  Corresponding Author: Advanced Control Research 1 team in the 
LG electronics, Korea. (jaegalrang@naver.com) 

*  School of Electronic and Electrical Engineering, Sungkyunkwan 
University, Korea. ({ty.lee, sjy1355, syjung}@skku.edu) 

**  Department of Electrical Engineering, Chosun University, Korea. 
({jaehong, kimyj21}@chosun.ac.kr) 

Received: April 18, 2014; Accepted: August 24, 2014 

ISSN(Print)  1975-0102 
ISSN(Online) 2093-7423 
 



Phase Advance Control to Reduce Torque Ripple of Brush-less DC Motor According to Winding Connection, Wye and Delta 

 2202 

where, sR  is phase resistance, sL  is inductance, and abce  
denotes BEMF of each phase. 

The output power equation is given by: 
 

    e a a b b c cP e i e i e i= + +   (2) 
 

where, ai , bi , ci  represent the current of each phase, 
respectively.  

The torque equation of 3-phase BLDC motor can be 
formulated from output power, eP , and angular frequency 
of rotor, mw , as following Eq. (3): 

 

 
    e e a a b b c c

m m

P e i e i e iT
w w

+ +
= =   (3) 

 
2.2 Characteristics of BLDC motor according to 

winding connection 
 
BLDC motor requires a trapezoidal waveform of BEMF, 

and it can be obtained in concentrated winding, normally. 
This characteristic differs markedly from BLAC motor 
with sinusoidal BEMF waveform. The torque is occurred 
by product of BEMF and phase current, expressed as Eq. 
(3). Therefore, input current should be a square wave 
analogous to BEMF, so we call a BLDC motor as square-
wave drive motor. A major difference between Y-
connection and Δ-connection is a requisite flat-top width 
of phase BEMF, 120° for Y-connection and 60° for Δ-
connection, besides winding method. This flat-top width of 
BEMF is not an automatic consequence of only connecting 
the winding in Y or ∆ differently. Therefore, the winding 
pitch and/or the pole-arc must be designed to satisfy each 
model BEMF condition. It is important to avoid triplen-
harmonics, defined as the odd multiples of the 3rd  
harmonics, in the phase BEMF, otherwise there will be a 
circulating current in the ∆-connection. In addition, 
saliency, ratio of inductance in d-axis and q-axis, is 
undesirable with square-wave drive, because it produces a 
reluctance torque, causing a vibration and noise, that varies 
as the rotor rotates. For this reason, the most common 
square-wave motors have surface-mounted magnets [7]. 

Fig. 1 shows the equivalent circuit of BLDC motor in 
accordance with winding connection method; (a) is for Y-
connection and (b) is for ∆-connection. The Y-connection 
and ∆-connection have a same circuit and switching till 
input terminal of motor, represented as the blue dotted line. 
However, as the red dotted line marks, the flow sequence 
of phase current is different in the two cases. 

By way of example, Fig. 2 indicates the flow of input 
current from DC supply to motor at a particular step in 6-
step inverter control. In case of Y-connection, when two 
switches out of six switches are ‘on’, only two phases are 
excited, which is noted “Y-connection, 2-phase excitation 
system”. On the other hand, all of three phases are excited 
at same condition in ∆-connection, called “Δ-connection, 
3-phase excitation system”. 

Theoretically, Δ-connection is appropriate for high speed, 
but it has low efficiency at low speed operating region. 
Meanwhile, Y-connection manifests its superiority on 
efficiency when it operates at high torque under low speed 
operating region. The lower efficiency and lower torque at 
low speed region compared with Y-connection are regarded 
as the major drawback in Δ-connection. 

Fig. 3(a) shows the ideal basic 6-step control for “Y-
connection, 2-phase excitation system”. The input current, 
flows in each phase, has to be maintained as flat-top for 
120° in electrical angle, and 2-phase out of 3-phase are 
excited at the same time in every step. That is, BLDC 
motor design must necessarily take BEMF of each phase 
into account in order that it manifests a trapezoidal 
waveform with 120° flat-top corresponding to that of input 
current, since torque of each phase is product of input 
current and BEMF. Then, torque of each phase can be 
obtained from flat-top of current and BEMF, and 
synthesized torque of 3-phase torque, which are shifted 

 
(a) Y-connection, 2-phase excitation system 

 
(b) Δ-connection, 3-phase excitation system 

Fig. 1. Equivalent circuit of BLDC motor according to 
winding connection 

 
(a) Y-connection, 2-phase excitation system 

 
(b) Δ-connection, 3-phase excitation system 

Fig. 2. Current flow example at one of 6-step control 
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120° each other, remains consistent by compensation, totally 
[6, 8, 9]. 

Analogous to Y-connection, the ideal basic 6-step control 
for “Δ-connection, 3-phase excitation system” is presented 
in Fig. 3(b). As mentioned, current flows in all 3-phases in 
every step, changing its direction and magnitude. Hence, 
BEMF has to be a trapezoidal waveform with flat-top 
during 60° not 120° in electrical angle. Also, current and 
BEMF in every step contribute to torque production, 
different from Y-connection case. Therefore, these should 
be considered into BLDC motor design. 

 
2.3 Phase advance control 

 
The basic 6-step control according to winding connection 

has been identified in previous chapter. However, when 
BLDC motor operate practically, current lags behind 
input voltage, fed by inverter, owing to inductance of 
stator winding [10]. In other words, current cannot reach 
to objective value instantaneously. For this reason, it is 
impracticable to apply current as square-waveform, and 
the discrepancy between current and BEMF, which were 
supposed to be consistent, is major factor of increasing 
torque ripple. 

As shown in Fig. 4(a), if the rate of increase and 
decrease of phase current is same, there is no torque ripple 
because non-changing current, Ic in this example, remains 
consistent. In most cases, however, the rate is different and 
it gives rise to torque ripple such as Figs. 4(b) and (c). The 
difference between phase current increase rate and 
decrease rate is proceeding from a time constant of coil, 

voltage difference of DC link and BEMF, and etc. Thus, 
proper control method is essential to compensate for 
lagging current [11, 12]. 

This paper introduces the control method, which is 
“phase advance control”, to compensate for lagging current 
by increasing conduction angle fed by inverter. 

The available voltage to drive current into the phase 
winding, VD , is the voltage difference between DC link, 

sV , and BEMF, LLe , and is expressed as Eq. (4): 
 

 V s LLV eD = -   (4) 
 
This available voltage would be decreased to zero when 

the motor is at high speed operation owing to BEMF 
increase. The principle of proposed method in this paper is 
advancing the turn-on angle to an earlier point on the 
BEMF waveform, where ∆V is greater, as shown in Fig. 5. 
By means of proposed method, di/dt  component would 
increase at the start of the conduction interval. There exists 
the most appropriate phase advance control angle which 
maximizes torque or minimizes torque ripple when any 
speed and torque level is given. A hazardous problem can 
arise in consequence of applying phase advance control, 

 
(a) Y-connection, 2-phase 

excitation system 

 
(b) Δ-connection, 3-phase 

excitation system 

Fig. 3. Ideal basic 6-step control 

 
(a) constant torque 

 
(b) torque decrease 

 
(c) torque increase 

Fig. 4. Torque ripple variation caused by current 

 
Fig. 5. Voltage available with phase advance control 

 

 
Fig. 6. BEMF waveform and comparison of current wave-

form according to 6-step and phase advance control 
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if the drive to the transistors shown in Fig. 1 is suddenly 
lost when LLe  is considerably higher than sV . In that 
case, there will be uncontrolled rectification through the 
freewheel diodes [7]. 

In Fig. 6, waveform of BEMF, that of input current 
applied basic 6-step control, and that of input current 
applied proposed phase advance control, are presented in 
sequence. Through this proposed method, each phase 
current flows at earlier point than normal point applying 6-
step control by switching. In the waveform of input current, 
it is represented as shaded regions that have influence on 
increasing torque ripple. As shown in Fig. 6, it is observed 
that shaded region, a' and b', of proposed control method 
has decreased compared with one of basic 6-step control. 

In Fig. 7, the effectiveness of change conduction angle 
on torque ripple is shown. In section, 1 2~t t , shaded as 
dark gray, it is shown that synthesized torque is getting 
decreased due to influence of lagging current. Nevertheless, 
torque ripple of synthesized torque can be reduced overall, 
since torque from each phase mutually compensates for 
the lagging current effect in 0 1~t t  section by applying 
proposed phase advance control [13]. 

 
 

3. Simulation Result 
 

3.1 Design and comparison results according to 
winding connection 

 
By using theory associated with winding connection, 

BLDC motors for both Y-connection and Δ-connection, 
having same performing specification, have been designed. 
The design specifications of BLDC motor for sunroof 
discussed in this paper are summarized in Table 1. 

In Fig. 8, drawings of both BLDC motors are shown, 
where (a) is for Y-connection and (b) is for Δ-connection. 
Both models have same stator configuration with distributed 
winding for the purpose of reducing torque ripple, and 
notch has been additionally chosen on teeth for reduction 
of cogging torque. Furthermore, Surface mounted Permanent 
Magnet (SPM) type has been sorted out for rotor with 
bread shaped PMs. To satisfy flat-top of BEMF in both 
models, a PM configuration has to be optimized and 

adopted. For example, in the case of Δ-connection, 60° flat-
top of BEMF has been implemented through cut-off edge 
of PMs mounted on rotor surface and considered in design. 

Fig. 9 represents BEMF waveforms according to Y-
connection and Δ-connection. As mentioned above, flat-top 
of BEMF waveform is maintained for 120° for Y-con-
nection, 60° for Δ-connection, not ideally but as possible. 

Fig. 10 shows the phase current flowing into each phase 
of Y-connection and ∆-connection, and torque waveform 
analyzed via FEA with both current source and voltage 
source, respectively. In the voltage source analysis, Figs. 
10(b) and (e), it is identified that the phase current 
increases slowly because of coil inductance unlike case of 
current source analysis one, Figs. 10(a) and (d). In Table 2, 
the FEA results have been compared under normal 6-step 
control condition. 

As mentioned, it is clear that torque ripple of voltage 
source analysis is higher than one of current source 
analysis remarkably in both winding method due to lagging 
current by coil inductance. For reference, the reason why 
input voltage of ∆-connection is lower compared with one 
of Y-connection is voltage available difference. In other 

 
Fig. 7. Phase current and synthesized torque waveforms 

applying phase advance control 

Table 1. Design specifications of BLDC motor 

 Parameters Spec. Unit 
Torque 0.0655 [Nm] Performance 
Speed 2500 [r/m] 

No. of pole and slot 4 / 12  
No. of phase 3  General 

Air-gap 0.5 [mm] 
Stator Outer diameter 36 [mm] 
Rotor PM property Ferrite-9D  

 

 
(a) Y-connection (b) Δ-connection 

Fig. 8. Comparison of BLDC motor configuration with Y-
connection and Δ-connection 

 
Fig. 9. Comparison results of BEMF waveform according 

to winding connection 
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words, even if the magnitude of phase BEMF is similar in 
both winding, there is a magnitude difference from a line-
to-line BEMF point. In case of ∆-connection, enough 
voltage available owing to lower line-to-line BEMF value 
makes higher current flow into phase winding than Y-
connection. 

 
3.2 Comparison results applying phase advance control 

 
It is verified that phase advance control, applied to 

BLDC motor, has influence on reduction of torque ripple in 
theory. When phase advance control is applied to BLDC 
motor aimed for torque ripple reduction, there are two 
ways; one is advancing both the start of the commutation 
interval and the end of one, the other is advancing only the 
start of one maintaining end point. Based on these methods, 
we have selected second one; advancing only the start 
angle of commutation interval in this research. 

Table 3. Torque ripple comparison in Y-connection and 
Δ-connection according to change of conduction 
angle 

 Conduction angle 120 130 140 150 160 170 
Input voltage [ dcV ] 8.0 7.7 7.4 6.8 6.4 6.0 Y 
Torque ripple[%] 34.1 34.3 32.7 29.5 27.8 33.4 

Input voltage[ dcV ] 4.3 3.9 3.6 3.3 3.1 3.1 Δ 
Torque ripple[%] 53.3 47.4 43.7 44.2 32.4 15.7 

 
Table 3 shows results of performance analysis of Y-

connection and Δ-connection each, for BLDC motor, by 
increasing conduction angle of line current from 120° to 
170° in tens when phase advance control applied. The 
wider conduction angle, the more current can be available 
into motor winding. For this reason, the average torque 
would increase if input voltage is maintained. In this 
research, thus, the input voltage has been controlled in each 
conduction angle case to satisfy required torque condition 
equally, and the results have been compared. As a result, if 
the current flowing into winding is in allowable range, the 
input voltage as well as torque ripple could be reduced. 
The minimum torque ripple is obtained at 160° conduction 
angle for Y-connection and 170° conduction angle for ∆-
connection each. As mentioned earlier, depending on the 
target performance and the motor type, it is regarded as 
requisite to identify proper conduction angle for optimal 
control. 

The phase current, also line current, of Y-connection is 
presented when conduction angle is 120°, normal control, 
and 160°, phase advance control, with torque waveform in 

 
(a) phase current with current source :  

Y-connection 

 
(b) phase current with voltage source : 

Y-connection 

 
(c) torque for (a)&(b) 

 

 
(d) phase current with current source :  

Δ-connection 

 
(e) phase current with voltage source :  

Δ-connection 

 
(f) torque for (d)&(e) 

 

Fig. 10. Comparison of input current and torque waveform 

Table 2. Comparison results of motor performance between 
Y- and Δ-connection models 

 Y-connection Δ-connection Unit 
Input current 

(current source) 3.35 4.1 [ ph_maxA ] 

Input voltage 
(voltage source) 8.0 4.25 [ dcV ] 

Average torque 0.0655 [Nm] 
Torque ripple 

(current source) 5.1 3.9 [%] 

Torque ripple 
(voltage source) 34.1 53.3 [%] 
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Fig. 11. This torque waveform manifests that the minimum 
value point of torque is getting increased higher as 
conduction angle increased, and it leads to a torque ripple 
reduction. 

Analogously to the previous result, Fig. 12 shows 
characteristics of input phase current and torque waveform 
for Δ-connection when the conduction angle 120° and 170° 
are applied. In case the conduction angle is 170°, it is 
identified that phase current has been varied dramatically 
compared with one of 120° conduction angle due to 
extended switching pulse width. 

By changing of conduction angle, the comparison 
results of torque characteristic including each phase torque 
occurred by product of phase current and BEMF are shown 

in Fig. 13. Analogous to the previous figures, shaded areas 
of Figs. 13(a) and (b), in Y-connection case, manifest the 
torque compensation region by overlapping each phase 
current and compensation region occurs periodically. 
However, in ∆-connection Figs. 13(c) and (d), this com-
pensation region is not seen because of the changed input 
current. Nevertheless, from these results, it is proved that 
6-step phase advance control is compatible with both Y-
connection and Δ-connection in terms of torque ripple 
reduction by adjusting conduction angle. 

 
 

4. Conclusion 
 
This paper has researched a design and control 

methodology of BLDC motor in order to reduce torque 
ripple considering winding connection, Wye and Delta. 
The validation of the proposed design methodology in 
accordance with winding connection is verified by 
performance analysis according to ideal current source 
analysis and voltage source analysis with 6-step control. 
Furthermore, the proposed method, phase advance control, 
is applied to designed model aimed for torque ripple 
reduction and its effectiveness has been investigated via 
FEA. As a result, the conduction angles 160° for Y-
connection and 170° for ∆-connection are optimal angle in 
order to reduce torque ripple maintaining average torque 
under BLDC model considered in this paper. 
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(a) 120° phase current (b) 120° torque 

  
(c) 160° phase current (d) 160° torque 

Fig. 11. Input current and torque waveforms in Y-con-
nection according to change of conduction angle 

 

  
(a) 120° phase current (b) 120° torque 

  
(c) 170° phase current (d) 170° torque 

Fig. 12. Input current and torque waveforms in Δ-con-
nection according to change of conduction angle 

 
(a) 120° torque analysis :  

Y-connection 

 
(b) 160° torque analysis :  

Y-connection 

 
(c) 120° torque analysis :  

Δ-connection 

 
(d) 170° torque analysis :  

Δ-connection 

Fig. 13. Torque analysis: phase torque & synthesized torque 
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