• 제목/요약/키워드: Adsorption kinetic model

검색결과 309건 처리시간 0.023초

자연토양 및 카올린에 대한 코발트, 스트론튬, 세슘의 흡착 특성 (Adsorption Characteristics of Cobalt, Strontium, and Cesium on Natural Soil and Kaolin)

  • 천경호;최정학;신원식;최상준
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1609-1618
    • /
    • 2014
  • In this study, as a fundamental study for the remediation of the radionuclides-contaminated soil, the adsorption of cobalt, strontium, and cesium on natural soil and kaolin were experimently investigated and adsorption characteristics were evaluated by using several adsorption kinetic and isotherm models. The pseudo-first-order kinetic model (PFOM), pseudo-second-order kinetic model (PSOM), one-site mass transfer model (OSMTM), and two compartment first-order kinetic model (TCFOKM) were used to evaluate the kinetic data and the pseudo-second-order kinetic model was the best with good correlation. The adsorption equilibria of cobalt, strontium, and cesium on natural soil were fitted successfully by Redlich-Peterson and Sips models. For kaolin, the adsorption equilibria of cobalt, strontium, and cesium were fitted well by Redlich-Peterson, Freundlich, and Sips models, respectively. The amount of adsorbed radionuclides on natural soil and kaolin was in the order of cesium > strontium > cobalt. It is considered that these results could be useful to predicting the adsorption behaviors of radionuclides such as cobalt, strontium, and cesium in soil environments.

Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil

  • Choi, Yong-Su;Kim, Sung-Chul;Shin, Joung-Du
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.413-420
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics and kinetic models of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. $NH_4-N$ concentration was analyzed by UV Spectrophotometer. For the experiment, the soil texture used in this study was sandy loam soil, and application rates of chemical fertilizer and pig compost were $420-200-370kgha^{-1}$ (N-P-K) and $5,500kgha^{-1}$ as recommended amount after soil test for corn cultivation. Biochar treatments were 0.2-5% to soil weight. Its adsorption characteristic was investigated with application of Langmuir isotherm, and pseudo-first order kinetic model and pseudo-second order kinetic model were used as kinetic models. Adsorption amount and removal rates of $NH_4-N$ were $39.3mg^{-1}$ and 28.0% in 0.2% biochar treatment, respectively. The sorption of $NH_4-N$ to biochar was fitted well by Langmiur model because it was observed that dimensionless constant ($R_L$) was 0.48. The maximum adsorption amount ($q_m$) and binding strength constant (b) were calculated as $4.1mgg^{-1}$ and $0.01Lmg^{-1}$ in Langmuir isotherm, respectively. The pseudo-second order kinetic model was more appropriate than pseudo-first order kinetic model for high correlation coefficient ($r^2$) of pseudo-second order kinetic model. Therefore, biochar produced from rice hull could reduce $N_2O$ by adsorbing $NH_4-N$ to biochar cooperated in sandy loam soil.

Evaluation of Loess Capability for Adsorption of Total Nitrogen (T-N) and Total Phosphorous (T-P) in Aqueous Solution

  • Kim, Daeik;Ryoo, Keon Sang;Hong, Yong Pyo;Choi, Jong-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2471-2476
    • /
    • 2014
  • The aim of the present study is to explore the possibility of utilizing loess for the adsorption of total phosphorous (T-P) and total nitrogen (T-N) in water. Batch adsorption studies were performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of T-P and T-N. The adsorption data showed that loess is not effective for the adsorption of T-N. However, loess exhibited much higher adsorption capacity for T-P. At concentration of $1.0mgL^{-1}$, approximately 97% of T-P adsorption was achieved by loess. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium $q_{e,cal}$ from pseudo-second-order kinetic model was relatively similar to the experimental adsorption equilibrium $q_{e,exp}$. The thermodynamic parameters such as free energy ${\Delta}G$, the enthalpy ${\Delta}H$ and the entropy ${\Delta}S$ were also calculated.

HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성 (Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite)

  • 김정배
    • 한국환경과학회지
    • /
    • 제27권3호
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구 (Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs))

  • 안병관
    • 한국전기전자재료학회논문지
    • /
    • 제24권11호
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

화력발전소에서 발생하는 석탄비산재로부터 합성한 Na-A 제올라이트의 Sr 이온 제거 특성 (Removal Characteristics of Sr Ion by Na-A Zeolite Synthesized using Coal Fly Ash Generated from a Thermal Power Plant)

  • 이창한;감상규;이민규
    • 한국환경과학회지
    • /
    • 제26권3호
    • /
    • pp.363-371
    • /
    • 2017
  • This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ${\Delta}H^0$ and ${\Delta}G^0$ showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.

Hydroxyapatite 첨가 활성탄을 이용한 Cd의 동역학적 흡착과 흡착평형에 관한 연구 (Kinetics and Equilibrium Adsorption Studies of Cd Adsorption by the Activated Carbon Containing Hydroxyapatite)

  • 안상우;최재영;박재우
    • 한국지반환경공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.45-51
    • /
    • 2010
  • 본 연구는 hydroxyapatite(HAP) 첨가 활성탄(HAP sorbent)의 카드뮴에 대한 흡착특성을 조사하였다. HAP 첨가량의 변화에 따른 카드뮴의 제거특성은 HAP 첨가량이 증가 할수록 카드뮴의 제거량은 흡착에 의한 영향으로 증가하는 것으로 나타났다. 이러한 결과는 HAP에 의한 이온교환능력의 증가에 의한 것으로 사료된다. 동역학적 흡착과 흡착평형에 관한 연구는 연속적인 회분식 실험을 통하여 조사하였다. 조사된 흡착평형 데이터는 Langmuir와 Freundlich isotherm mode을 사용하여 살펴보았으며, 초기 흡착질의 농도 변화에 따른 HAP 첨가 활성탄의 카드뮴의 흡착은 Freundlich isotherm model에 적합한 것으로 나타났다. Cd의 흡착반응의 동역학적 연구를 위하여 유사 1차 반응속도와 유사 2차 반응속도 모델을 사용하 Cd 흡착반응의 흡착 메커니즘을 조사하였다. 유사 2차 반응속도를 따르며, 유사 2차 반응속도 상수는 활성탄에 HAP의 첨가량이 증가할수록 증가하는 것을 확인할 수 있었다. 또한, intraparticle diffusion model을 사용하여 수용액상의 흡착질과 흡착매질과의 흡착 메커니즘을 조사하였다. 수용액상 카드뮴의 흡착 메커니즘은 흡착질과 흡착매질에서 표면흡착반응과 입자내 확산이 동시에 일어나는 것으로 확인되었다.

키토산비드를 이용한 양이온/음이온의 흡착모델 적용 (Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead)

  • 안병렬
    • 상하수도학회지
    • /
    • 제33권3호
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).

Removal of Heavy metal Ions from Aqueous Solutions by Adsorption on Magadiite

  • 정순용;이정민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권2호
    • /
    • pp.218-222
    • /
    • 1998
  • Removal of Cd(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) from aqueous solutions using the adsorption process on magadiite has been investigated. It was found that the removal percentage of metal cations at equilibrium increases with increasing temperature, and follows the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). Equilibrium modeling of adsorption showed that the adsorptions of Cd(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) were fitted to Langmuir isotherm. Kinetic modeling of the adsorption showed that first order reversible kinetic model fitted to experimental data. From kinetic model and equilibrium data, the overall rate constant (k) and the equilibrium constant (K) for the adsorption process were calculated. The overall rates of adsorption of metal ions follow the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). From the results of thermodynamic analysis, standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) of adsorption process were calculated.

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.