Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.3.173

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater  

Niaei, Hadi Adel (Faculty of Chemical Engineering, Sahand University of Technology)
Rostamizadeh, Mohammad (Faculty of Chemical Engineering, Sahand University of Technology)
Publication Information
Advances in nano research / v.9, no.3, 2020 , pp. 173-181 More about this Journal
Abstract
Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.
Keywords
adsorption; electro-Fenton; kinetic; nano-zeolite; pharmaceutical;
Citations & Related Records
연도 인용수 순위
  • Reference
1 El-Desoky, H.S., Ghoneim, M.M., El-Sheikh, R. and Zidan, N.M. (2010), "Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent", J. Hazard. Mater., 175, 858-865. https://doi.org/10.1016/j.jhazmat.2009.10.089.   DOI
2 El-Ghenymy, A., Garcia-Segura, S., Rodriguez, R.M., Brillas, E., El Begrani, M.S. and Abdelouahid, B.A. (2012), "Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology", J. Hazard. Mater., 221, 288-297. http://dx.doi.org/10.1016/j.jhazmat.2012.04.053.   DOI
3 Eliopoulos, G.M., Eliopoulos, G.M. and Roberts, M.C. (2003), "Tetracycline therapy: update", Clin. Infect. Dis., 36, 462-467. https://doi.org/10.1086/367622.   DOI
4 Freundlich, H. and Hatfield, H.S. (1926), Colloid and Capillary Chemistry, Methuen And Co. Ltd., London, UK. https://doi.org/10.1021/ed003p1454.2.
5 Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. and Su, X. (2012), "Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide", J. Colloid Interface Sci., 368, 540-546. https://doi.org/10.1016/j.jcis.2011.11.015.   DOI
6 Ghadim, E.E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S. and Nafisi, S. (2013), "Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies", PLoS One, 8, e79254. https://doi.org/10.1371/journal.pone.0079254.   DOI
7 Gharibian, S., Hazrati, H. and Rostamizadeh, M. (2020), "Continuous electrooxidation of methylene blue in filter press electrochemical flowcell: CFD simulation and RTD validation", Chem. Eng. Process, 150, 107880. https://doi.org/10.1016/j.cep.2020.107880.   DOI
8 Huang, L., Wang, M., Shi, C., Huang, J. and Zhang, B. (2014), "Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation", Desalin. Water Treat., 52, 2678-2687. https://doi.org/10.1080/19443994.2013.833873.   DOI
9 Ifebajo, A.O., Oladipo, A.A. and Gazi, M. (2019), "Efficient removal of tetracycline by CoO/$CuFe_2O4$ derived from layered double hydroxides", Environ. Chem. Lett., 17, 487-494. https://doi.org/10.1007/s10311-018-0781-0.   DOI
10 Kianfar, E., Salimi, M., Pirouzfar, V. and Koohestani, B. (2018), "Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline", Int. J. Appl. Ceram. Technol., 15, 734-741. https://doi.org/10.1111/ijac.12830.   DOI
11 Kraft, A., Stadelmann, M. and Blaschke, M. (2003), "Anodic oxidation with doped diamond electrodes: A new advanced oxidation process", J. Hazard. Mater., 103, 247-261. https://doi.org/10.1016/j.jhazmat.2003.07.006.   DOI
12 Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004   DOI
13 Liu, D., Zhang, H., Wei, Y., Liu, B., Lin, Y., Li, G. and Zhang, F. (2018), "Enhanced degradation of ibuprofen by heterogeneous electro-Fenton at circumneutral pH", Chemosphere, 209, 998-1006. https://doi.org/10.1016/j.chemosphere.2018.06.164.   DOI
14 Mahboub, M.J.D., Rostamizadeh, M., Dubois, J.I. and Patience, G.S. (2016), "Partial oxidation of 2-methyl-1, 3-propanediol to methacrylic acid: Experimental and neural network modeling", RSC Adv., 6, 114123-114134. https://doi.org/10.1039/C6RA16605A.   DOI
15 Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M. and Comninellis, C. (2003), "Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes", J. Electrochem. Soc., 150, 79-83. https://doi.org/10.1149/1.1553790.
16 Martinez-Huitle, C.A. and Brillas, E. (2008), "Electrochemical alternatives for drinking water disinfection", Angew. Chem. Int. Ed., 47, 1998-2005. https://doi.org/10.1002/anie.200703621.   DOI
17 Puga, A., Rosales, E., Pazos, M. and Sanroman, M. (2020), "Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst", Process Saf. Environ. Prot., 144, 100-110. https://doi.org/10.1016/j.psep.2020.07.021.   DOI
18 Mohebbi, S., Rostamizadeh, M. and Kahforoushan, D. (2020), "Effect of molybdenum promoter on performance of high silica MoO3/B-ZSM-5 nanocatalyst in biodiesel production", Fuel, 266, 117063. https://doi.org/10.1016/j.fuel.2020.117063.   DOI
19 Ozcan, A., Ozcan, A.A. and Demirci, Y. (2016), "Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment", Chem. Eng. J., 304, 518-526. https://doi.org/10.1016/j.cej.2016.06.105.   DOI
20 Panizza, M. and Cerisola, G. (2009), "Direct and mediated anodic oxidation of organic pollutants", Chem. Rev., 109, 6541-6569. https://doi.org/10.1007/978-1-4419-6996-5_126.   DOI
21 Rostamizadeh, M. and Rizi, S.M.H. (2012), "Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks", J. Membr. Sci., 403, 146-151. http://dx.doi.org/10.1016/j.memsci.2012.02.036.   DOI
22 Rostamizadeh, M., Yaripour, F. and Hazrati, H. (2018a), "High efficient mesoporous HZSM-5 nanocatalyst development through desilication with mixed alkaline solution for methanol to olefin reaction", J. Porous Mater., 25, 1287-1299. https://doi.org/10.1007/s10934-017-0539-2.   DOI
23 Rostamizadeh, M., Yaripour, F. and Hazrati, H. (2018b), "Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts", Polyolefins J., 5, 59-70. https://doi.org/10.22063/poj.2017.1501.
24 Ali, I., Singh, P., Aboul-Enein, H.Y. and Sharma, B. (2009), "Chiral analysis of ibuprofen residues in water and sediment", Anal. Lett., 42, 1747-1760. https://doi.org/10.1080/00032710903060768.   DOI
25 Rostamizadeh, M., Jalali, H., Naeimzadeh, F. and Gharibian, S. (2019), "Efficient removal of diclofenac from pharmaceutical wastewater using impregnated zeolite catalyst in heterogeneous Fenton process", Phys. Chem. Res., 7, 37-52. https://doi.org/10.22036/pcr.2018.144779.1524.
26 Troster, I., Fryda, M., Herrmann, D., Schafer, L., Hanni, W., Perret, A., Blaschke, M., Kraft, A. and Stadelmann, M. (2002), "Electrochemical advanced oxidation process for water treatment using DiaChem(R) electrodes", Diamond Relat. Mater., 11, 640-645. https://doi.org/10.2166/wst.2004.0264.   DOI
27 Vosoughi, M., Fatehifar, E., Derafshi, S. and Rostamizadeh, M. (2017), "High efficient treatment of the petrochemical phenolic effluent using spent catalyst: Experimental and optimization", J. Environ. Chem. Eng., 5, 2024-2031. https://doi.org/10.1016/j.jece.2017.04.003.   DOI
28 Xue, Z., Wang, T., Chen, B., Malkoske, T., Yu, S. and Tang, Y. (2015), "Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method", Materials, 8, 6360-6378. https://doi.org/10.3390/ma8095310.   DOI
29 Yahya, M.S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. and Oturan, M.A. (2014), "Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: Kinetics and oxidation products", Chemosphere, 117, 447-454. https://doi.org/10.1016/j.chemosphere.2014.08.016.   DOI
30 Akyol, A., Can, O.T., Demirbas, E. and Kobya, M. (2013), "A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant", Sep. Purif. Technol., 112, 11-19. https://doi.org/10.1016/j.seppur.2013.03.036.   DOI
31 Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G. and Garcia, J. (2016), "Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials", Chem. Eng. J., 283, 936-947. https://doi.org/10.1016/j.cej.2015.08.023.   DOI
32 Basu, S. and Barman, S. (2019), "Adsorptive removal of fipronil from its aqueous solution by modified zeolite HZSM-5: Equilibrium, kinetic and thermodynamic study", J. Mol. Liq., 283, 867-878. https://doi.org/10.1016/j.molliq.2019.02.140.   DOI
33 Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109, 6570-6631. https://doi.org/10.1021/cr900136g.   DOI
34 Chen, L., Zhu, S.Y., Wang, Y.M. and He, M.Y. (2010), "One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template", New J. Chem., 34, 2328-2334. https://doi.org/10.1039/C0NJ00316F.   DOI
35 Chopra, I. and Roberts, M. (2001), "Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance", Microbiol. Mol. Biol. Rev., 65, 232-260. https://doi.org/10.1128/MMBR.65.2.232-260.2001.   DOI
36 Chu, W., Li, X., Zhu, X., Xie, S., Guo, C., Liu, S., Chen, F. and Xu, L. (2017), "Size-controlled synthesis of hierarchical ferrierite zeolite and its catalytic application in 1-butene skeletal isomerization", Microporous Mesoporous Mater., 240, 189-196. https://doi.org/10.1016/j.micromeso.2016.11.015.   DOI