Kinetics and Equilibrium Adsorption Studies of Cd Adsorption by the Activated Carbon Containing Hydroxyapatite

Hydroxyapatite 첨가 활성탄을 이용한 Cd의 동역학적 흡착과 흡착평형에 관한 연구

  • 안상우 (한양대학교 건설환경공학과 대학원) ;
  • 최재영 (한국과학기술연구원 강릉분원) ;
  • 박재우 (한양대학교 건설환경공학과)
  • Received : 2009.09.02
  • Accepted : 2009.11.13
  • Published : 2010.01.01

Abstract

Cadmium (Cd) adsorption by the activated carbon containing hydroxyapatite (HAP) was investigated. Cd adsorption with different HAP mass ranged from 10% to 30%. With more HAP, more Cd was adsorbed. These results suggest that the higher HAP dose causes an increase of the ion exchange potential in HAP sorbent. Kinetics and equilibrium studies were investigated in series of batch adsorption experiments. Langmuir and Freundlich isotherm models were fit to the equilibrium data and Cd adsorption on HAP sorbent were found to follow the Freundlich isotherm model well in the initial adsorbate concentration range. The simple kinetic model, the pseudo first order kinetic model and the pseudo second order kinetic model, were used to investigate the adsorption. The adsorption reaction of Cd followed the pseudo second order kinetic model, and the adsorption pseudo second order kinetic constants ($k_2$) increased with increasing initial HAP amounts onto activated carbon. Also, intraparticle diffusion model was used to investigate the adsorption mechanism between adsorbate and adsorbent in the aqueous phase. Surface adsorption reaction and intraparticle diffusion occur simultaneously Cd adsorption mechanism from aqueous phase in this study.

본 연구는 hydroxyapatite(HAP) 첨가 활성탄(HAP sorbent)의 카드뮴에 대한 흡착특성을 조사하였다. HAP 첨가량의 변화에 따른 카드뮴의 제거특성은 HAP 첨가량이 증가 할수록 카드뮴의 제거량은 흡착에 의한 영향으로 증가하는 것으로 나타났다. 이러한 결과는 HAP에 의한 이온교환능력의 증가에 의한 것으로 사료된다. 동역학적 흡착과 흡착평형에 관한 연구는 연속적인 회분식 실험을 통하여 조사하였다. 조사된 흡착평형 데이터는 Langmuir와 Freundlich isotherm mode을 사용하여 살펴보았으며, 초기 흡착질의 농도 변화에 따른 HAP 첨가 활성탄의 카드뮴의 흡착은 Freundlich isotherm model에 적합한 것으로 나타났다. Cd의 흡착반응의 동역학적 연구를 위하여 유사 1차 반응속도와 유사 2차 반응속도 모델을 사용하 Cd 흡착반응의 흡착 메커니즘을 조사하였다. 유사 2차 반응속도를 따르며, 유사 2차 반응속도 상수는 활성탄에 HAP의 첨가량이 증가할수록 증가하는 것을 확인할 수 있었다. 또한, intraparticle diffusion model을 사용하여 수용액상의 흡착질과 흡착매질과의 흡착 메커니즘을 조사하였다. 수용액상 카드뮴의 흡착 메커니즘은 흡착질과 흡착매질에서 표면흡착반응과 입자내 확산이 동시에 일어나는 것으로 확인되었다.

Keywords

References

  1. 감상규, 김덕수, 이민규 (1999), 천연 및 전처리 제올라이트에 의한 2가 중금속 이온 제거능의 비교 검토, 한국환경과학회지, Vol. 8, No. 3, pp. 399-409.
  2. 강전택, 정기호 (2000), Apatite를 이용한 중금속 제거, 한국환경과학회지, Vol. 9, No. 4, pp. 325-330.
  3. 강전택, 정기호 (2001), 구조개질 Apatite의 항균효과, 한국환경과학회지, Vol. 10, No. 6, pp. 387-391.
  4. 강한, 박성민, 장윤득, 김정진 (2008), 제올라이트와 벤토나이트를 이용한 중금속 흡착특성, 한국광물학회지, Vol. 21, No. 1, pp. 45-56.
  5. 권보연, 최명찬, 임정현, 장민, 신연식, 김지형 (2008), 탄광배수슬러지를 이용한 산성광산배수 중의 Cu(II)흡착: 흡착평형 및 흡착속도 모델링, 한국폐기물학회지, Vol. 25, No. 8, pp. 709-715.
  6. 백미화, 최영진, 김영지, 김동수 (2009), 활성탄에 의한 말라카이트 그린 흡착 특성에 관한 기초연구, 한국물환경학회지, Vol. 25, No. 3, pp. 459-463.
  7. 장광규, 신헌용 (2007), 공침법을 이용한 은-수산화아파타이트 항균소재의 제조, 한국화학공학회지, Vol. 45, No. 5, pp. 473-478.
  8. 한국광물학회 (2000), 산업광물상식: 인회석(Apatite), 한국광물학회지, Vol. 13, No. 2, pp. 76-77.
  9. Allen, S. J., McKay, G. and Khader, K. Y. H. (1989), Intraparticle Diffusion of Basic Dye during Adsorption onto Sphagnum Peat, Environmental Pollution, Vol. 56, No. 1, pp. 39-50. https://doi.org/10.1016/0269-7491(89)90120-6
  10. Bahdod, A., El Asri, S., Saoiabi, A., Coradin, T. and Laghzizil, A. (2009), Adsorption of Phenol from an Aqueous Solution by Selected Apatite Adsorbents: Kinetic Process and Impact of the Surface Properties, Water research, Vol. 43, pp. 313-318. https://doi.org/10.1016/j.watres.2008.10.023
  11. Cartner, M. C., Weber, W. J. and Olmstead, K. P. (1992), Effects of Background Dissolved Organic Matter on TCE Adsorption by GAC, Journal American Water Works Association, pp. 81-91.
  12. Chingombe, P., Saha, B. and Wakeman, R. J. (2005), Surface Modification and Characterization of a Coal-Based Activated Carbon, Carbon, Vol. 43, No. 15, pp. 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021
  13. Corami, A., Mignardi, S. and Ferrini, V. (2007), Copper and Zinc Decontamination from Single- and Binary-Metal Solutions using Hydroxyapatite, Journal of Hazardous Materials, Vol. 146, pp. 164-170. https://doi.org/10.1016/j.jhazmat.2006.12.003
  14. Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F. and Montiel, A. (2008), Heavy Metal Removal from Aqueous Solutions by Activated Phosphate Rock, Journal of Hazardous Materials, Vol. 156, pp. 412-420. https://doi.org/10.1016/j.jhazmat.2007.12.036
  15. Ho, Y. and McKay, G. (2000), The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Peat Moss, Water Research, Vol. 34, pp. 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
  16. Jhal, V. K., Matsuda M. and Miyake, M. (2008), Sorption Properties of the Activated Carbon-Zeolite Composite Prepared from Coal Fly Ash for $Ni^{2+}$, $Cu^{2+}$, $Cd^{2+}$, and $Pd^{2+}$, Journal of Hazardous Materials, Vol. 160, pp. 148-153. https://doi.org/10.1016/j.jhazmat.2008.02.107
  17. Li, Y. H., Wang, S., Luan, Z., Ding, J., Xu, C. and Wu, D. (2003), Adsorption of Cadmium(II) from Aqueous Solution by Surface Oxidized Carbon Nanotube, Carbon, Vol. 41, pp. 1057-1062. https://doi.org/10.1016/S0008-6223(02)00440-2
  18. Morhan, D. and Pittman Jr., C. U. (2006), Activated Carbons and Low Cost Adsorbents for Remediation of Tri-and Hexavalent Chromium from Water, Journal of Hazardous Materials, B137, pp. 762-811.
  19. Nita, S., Lee, Y. J., Huifang, X., Mark, C. and Grillard, J. F. (2007), Role of Fe(II) and Phosphate in Arsenic Uptake by Coprecipotation, Grochimica et Cosmochimica Acta, Vol. 71, pp. 3193-3210. https://doi.org/10.1016/j.gca.2007.04.008
  20. Richard, F.J. (1959), A Flexible Growth Function for Empirical use, Journal of Experimental Botany, Vol. 10, pp. 290-300. https://doi.org/10.1093/jxb/10.2.290
  21. Sato, S., Yoshihara, K., Moriyama, K., Machida, M. and Tatsumoto, H. (2007), Influence of Activated Carbon Surface Acidity on Adsorption of Heavy Metal Ions and Aromatics from Aqueous Solution, Applied Surface Science, Vol. 253, pp. 8554-855. https://doi.org/10.1016/j.apsusc.2007.04.025
  22. Takahashi, A., Yang, F. H. and Yang, R. T. (2002), New Sorbents for Desulfurization by $\pi$ -Complexation: Thiophene/Benzene Adsorption, Industrial and Engineering Chemistry Research, Vol. 41, No. 10, pp. 2487-2136. https://doi.org/10.1021/ie0109657
  23. Valsami-Jones, E., Ragnarsdottir, K. V., Putnis, A., Bosbach, D., Kemp, A. J. and Cressey, G. (1998), The Dissolution of Apatite in the Presence of Aqueous Metal Cations at pH 2-7, Chemical Geology, Vol. 151, pp. 215-233. https://doi.org/10.1016/S0009-2541(98)00081-3
  24. Vidic, R. D. and Siler, D. P. (2001), Vapor-phase Elemental Mercury Adsorption by Activated Carbon Impregnated with Chloride and Chelating Agents, Carbon, Vol. 39, No. 1, pp. 3-14. https://doi.org/10.1016/S0008-6223(00)00081-6
  25. Xu, Y., Schwartz, F. W. and Trania, S. J. (1994), Sorption of $Zn^{2+}$ and $Cd^{2+}$ on Hydroxyapatite Surfaces, Environmental Science and Technology, Vol. 28, pp. 1472-1780. https://doi.org/10.1021/es00057a015
  26. Youssef, A. M., El-Nabarawy, Th. and Samra, S. E. (2004), Sorption Properties of Chemically-activated Carbons 1. Sorption of Cadmium(II) Ions, Colloids and Surfaces A: Physicochemical Engineering, Vol. 235, pp. 153-162. https://doi.org/10.1016/j.colsurfa.2003.12.017