• Title/Summary/Keyword: Adsorption isotherm equation

Search Result 145, Processing Time 0.032 seconds

Study on Accuracy and Validity Tests for Various Prediction Models for Gas and Vapor Respirator Cartridge Service Lives (가스 및 유기용제용 호흡보호구의 정화통에 대한 수명예측방법의 정확도 및 타당성 검증연구)

  • Park, Doo Yong;Park, Ji Young;Yoon, Chung Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.19-31
    • /
    • 1999
  • Most breakthrough tests are conducted at higher concentration levels compared to those in the field of air-purifying respirator applications. For example, typical challenge concentrations for breakthrough tests agains tcarbon tetrachloride are ranged between 250-1000 ppm although applicable concentrations range for air-purifying cartridge is 5-50 ppm for carbon tetrachloride. However, no guarantee has been made that isotherms derived from the experiment at high challenge concentrations could estimate adsorption capacity at the lower concentration range where workers wear usually air-purifying respirators. Three models of adsorption isotherms (Freundlich, Langmuir and Dubinin/Radushkevich(D/R) isotherms) that have been commonly applied for respirator cartridge testing were evaluated. Adsorption capacity at each challenge concentration was calculated from the Reaction Kinetic equation fitted for the breakthrough data. These data were used for derivation of three isotherms. In general, the D/R isotherm has given the best agreement between estimated adsorption capacities and experimentally measured. If the challenge concentration of 100 ppm is included for derivation of models, Freundlich and D/R models could succes sfully produced good estimations for adsorption capacities at 50 ppm level. Estimated adsorption capacities by both models ranged in 94 - 109 % of the experimentally measured. However, Langmuir model gives underes timation in all cases.

  • PDF

Adsorption Characteristics of Cobalt Ion with Zeolite Synthesized by Coal Fly Ash (석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착특성)

  • Lee, Chang-Han;Suh, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.941-946
    • /
    • 2009
  • Two types of synthetic zeolites, commercially used (Z-WK) and synthesized by coal fly ash (Z-C1), and raw coal fly ash(F-C1) were examined for its kinetics and adsorption capacities of cobalt. Experimental data are fitted with kinetic models, Lagergen $1^{st}$ and $2^{nd}$ order models, and four types of adsorption isotherm models, Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan. Synthesized zeolite (Z-C1) which had 1.51 of Si/Al ratio was synthesized by raw coal fly ash from a thermal power plant. Adsorption capacities with three types of adsorbents, Z-WK, Z-C1, and F-C1, were in the order of Z-C1 (94.15 mg/g) > F-C1 (92.94 mg/g) > Z-WK (88.56mg/g). The adsorption kinetics of Z-WK and Z-C1 with cobalt could be accurately described by a pseudo-second-order rate equation. The adsorption isotherms of Z-WK and Z-C1 with cobalt were well fitted by the Langmuir and Redlich-Peterson equation. Z-C1 will be used to remove cobalt in water as a more efficient absorbent.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

Removal Charateristics of Erythrosine by Activated Carbon Adsorption (활성탄 흡착에 의한 Erythrosine의 제거 특성)

  • Lee, Jong-Jib;Yoon, Sung-Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.499-504
    • /
    • 2009
  • Erythrosine is used a food coloring, ink and dye, etc. but erithrosine is rarely used in United States due to its known hazards. The adsorption characteristics of erythrosine by granular activated carbon were investigated in the batch adsorber and the packed column. The adsorptivity of activated carbon for erythrosine were largely improved by pH control. When the pH was 11 in the sample, the erythrosine could be removed 98% of initial concentration. It was estabilished that the adsorption equilibrium of erythrosine on granular activated carbon was successfully fitted by Freundlich isotherm equation in the concentration range from 10mg/L to 1,000mg/L. The characteristics of breakthrough curve of activated carbon packed column depend on the design variables such as initial concentration, bed height, and flow rate.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Leaching Test and Adsorption Characteristics of Porphyry for Removal of Heavy Metals (맥반석의 용출시험 및 중금속 흡착특성)

  • Kim, Jong-Boo;Shen, Ming-Guo;Sung, Nak-Whan;Choi, Moon-Jeong;Kim, Kyung-Joo;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.57-62
    • /
    • 2000
  • This experiment was done to investigate the leaching and adsorption properties of heavy metals on porphyry. The comparison with respect to the leachability of heavy metals from porphyry between the Korea Standard Leaching Test (KSLT) and the Toxicity Characteristic Leaching Procedure (TCLP) was carried out. The fractional composition of leachate and the total concentration of heavy metal of porphyry were studied through Sequential Extraction Procedure (SEP) and EPA Method 3050. Adsorption experiment of porphyry has pointed out that the optimum dosage of porphyry for 50ppm Pb was over 10g/L, the effective particle size for absorption was below 200 mesh and the optimum pH was about 7. From the Freundlich' adsorption equation, 1/n was 1.0722, and k was 0.0041. After adsorption, the fractional composition of Pb was changed. The exchangeable, carbonate, reducible fractions were increased, and the organic fraction was not changed, and the residual fraction was decreased.

  • PDF

Removal Properties of Aqueous Ammonium ion with Surface Modified Magnetic Zeolite Adsorbents (자성으로 표면개질된 제올라이트 흡착제를 이용한 수중 암모늄 이온 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.152-156
    • /
    • 2019
  • The removal property of magnetic zeolite for the adsorption of aqueous ammonium ion was examined in this work. The surface modified magnetic zeolite was produced by hydrothermal synthesis. The complex of zeolite and $Fe_3O_4$ was established by the observation of SEM and XRD analysis and less than 12.6% of $Fe_3O_4$ content in magnetic zeolite was observed in the form of $Fe_3O_4$ particles. The optimum pH of adsorption was shown around 8 and the maximum adsorption linearly decreased with the increase of $Fe_3O_4$ content. The adsorption isotherm for aqueous ammonium ion was approximated by Langmuir equation. The developed surface modified magnetic zeolite adsorbent was recommended to control the nitrogen pollution for wetland environment system.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

The Removal of Phosphorus by Spent Foundry Sand (폐주물사를 이요한 인제거)

  • 윤철종;진양오;박승조
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.26-30
    • /
    • 1999
  • The removal of phosphorus was investigated from sewage waste water (SWW) using the used foundry sand (UFS). The optimal pH occurred at pH 2 for adsorption of phosphorus species in batch test. Phosphorus could be recovered with 99.9% from SWW in two hours at pH 2 using 100 g of UFS per liler of SWW. The adsorption of phosphorus species on UFS obeyed Langmuir isotherm, whose equation could be expressed by 1= 0.00059/(1+2.49878). Continuous column test for adsorption showed that breakthrough point appeared In 25 hours on the condition of breakthrough concentration of 8 mg/l

  • PDF