Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon

입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구

  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Published : 2013.04.10

Abstract

In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

수용액으로부터 유독한 말라카이트 그린 성분을 제거하는데 있어서 입상 활성탄의 활용가능성을 회분식 실험을 통해 살펴보았다. 흡착변수로서 흡착온도, 접촉시간과 초기농도의 영향을 조사하였다. 흡착평형자료로부터 Langmuir와 Freundlich 흡착등온식에 대한 적합성을 평가하였다. 298, 308 및 318 K에서 흡착평형은 Langmuir 흡착등온식이 더 잘 맞았으며, 계산된 분리계수 값으로부터 입상 활성탄에 의한 말라카이트 그린의 효과적인 처리가 가능하다는 것을 알 수 있었다. 동력학적 실험으로부터, 흡착공정은 유사이차반응속도식에 잘 맞으며, 속도상수($k_2$) 값은 말라카이트그린의 초기농도와 온도가 증가할수록 감소하였다. 활성화에너지, 엔탈피, 엔트로피 및 자유에너지변화와 같은 열역학파라미터들은 흡착공정의 특성을 평가하기 위하여 조사하였다. 활성화에너지의 계산값은 입상 활성탄에 대한 말라카이트 그린의 흡착이 물리적 공정임을 나타냈다. 자유에너지변화값($\Delta$G = -3.68~-7.76 kJ/mol)과 엔탈피변화값($\Delta$H = +26.34 kJ/mol)은 흡착공정이 298~318 K범위에서 자발적이고 흡열과정으로 일어난다는 것을 나타냈다.

Keywords

References

  1. S. J. Culp, L. R. Blankenship, D. F. Kusewitt, D. R. Deorge, L. T. Mulligan, and F. A. Beland, Chem. Biol. Interact, 122, 153 (1999). https://doi.org/10.1016/S0009-2797(99)00119-2
  2. L. Zhou, C. Gao, and W. Xu, ACS Appl. Mater. Interf., 2, 1483 (2010). https://doi.org/10.1021/am100114f
  3. B. Shi, G. Li, C. Wang, I. Feng, and H. Tang, J. Hazard. Mater., 143, 567 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076
  4. J. Lee, S. Choi, R. Thiruvenkatacharib, W. Chim, and H. Moon, Water Res., 40, 435 (2006). https://doi.org/10.1016/j.watres.2005.11.034
  5. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B113, 2293 (2009). https://doi.org/10.1021/jp809796e
  6. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B112, 10153 (2008).
  7. W. Chen, W. Lu, Y. Yao, and M. Xu, Environ. Sci. Technol., 41, 6240 (2007). https://doi.org/10.1021/es070002k
  8. V. K. Gupta, A. Mittal, L. Krisnan, and V. Grajbe, Sep. Purif. Technol., 40, 87 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  9. L. Papinutti, N. Mouso, and F. Forchiassin, Enzyme Microb. Technol., 349, 848 (2006).
  10. I. A. Rahman, B. Saad, S. Shaidan, and E. S. Syarizal, Bioresour. Technol., 96, 1578 (2005). https://doi.org/10.1016/j.biortech.2004.12.015
  11. S. S. Tahir and M. N. Rauf, Chemoshere, 63, 1842 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.033
  12. Y. Onal, C. A. BaSr, D. Eren, C. S. Onalzdemir, and T. Depci, J. Hazard. Mater., 128, 150 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.055
  13. A. Mittal, J. Hazard. Mater., B133, 196 (2006).
  14. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, Ind. Eng. Chem. Fund., 5, 212 (1966). https://doi.org/10.1021/i160018a011
  15. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  16. C. Ijagbemi, M. Baek, and D. Kim, J. Hazard. Mater., 166, 538 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.085
  17. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  18. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Chem. Eng. J., 124, 89 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  19. M. H. Baek, C. O. Ijagbemi, S. J. O, and D. S. Kim, J. Hazard. Mater., 176, 820 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.110
  20. J. Zhang, Y. Li, C. Zhang, and Y. Jing, J. Hazard. Mater., 150, 774 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.036
  21. R. Ahmad and R. Kumar, J. Environ. Manag., 91, 1032 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  22. S. Chowdhury, R. Mishra, and P. Saha, Desalination, 265, 159 (2011). https://doi.org/10.1016/j.desal.2010.07.047
  23. Z. Bekci, C. Ozveri, Y. Seki, and K. Yurdakoc, J. Hazard. Mater., 154, 254 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.021
  24. J. J. Lee, Appl. Chem. Eng., 22, 224 (2011).