• Title/Summary/Keyword: Adsorption effect

Search Result 1,262, Processing Time 0.03 seconds

Interfacial Properties of Imidazoline Cationic Surfactant (Imidazoline 양이온 계면활성제의 계면 특성)

  • Kim, Ji Sung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • In this study, interfacial properties were measured for imidazoline type cationic surfactant system which has been widely used as a fabric softener, a dispersant, an anti-static agent, a bleach activator, and an emulsifier. The CMC of imidazoline surfactant was near $6{\times}10^{-5}mol/L$ and the surface tension at CMC was about 32 mN/m. It was found that surface tension was not affected by surfactant concentration but decreased with an increase in pH. The interfacial tension between 1 wt% aqueous solution and n-dodecane was shown to be about 0.01 mN/m and equilibration time was not affected by pH. Phase behavior experiment in a binary aqueous surfactant system showed that only micellar solution of $L_1$ phase was found under conditions of temperature and pH investigated during this study. Only a two-phase region consisting of lower-phase microemulsion in equilibrium with excess oil phase existed under the same conditions, when oil was added to the binary surfactant system. The foam stability measured with 1 wt% surfactant solution increased with pH, which is consistent with surface tension measurement result. QCM(quartz crystal microbalance) measurement showed that surfactant adsorption increased with surfactant concentration but decreased with pH. According to the friction measurement, best fabric softening effect by imidazoline surfactant system was found under alkali conditions.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of GAC Packing Fraction (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 입상 활성탄 충전율에 의한 영향)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • In this study, we used hybrid module that was composed of packing granular activated carbon (GAC) between module inside and outside of ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, synthetic water was prepared with humic acid and kaolin. Packing fraction of GAC was changed from 0 to 24.05% to see effect of packing fraction. As a result, changing curves of resistance of membrane fouling ($R_f$) and permeate flux (J) during 3 h operation were almost overlapped independent of packing fraction of GAC. Treatment efficiencies of turbidity were very high above 99.46% at all packing fractions of GAC. And treatment efficiency of NOM, which was measured by $UV_{254}$ absorbance, was the highest value of 99.43% at packing fraction of 24.05%. Then, we operated the hybrid process during 13 h at packing fraction of 24.05%. As a result, J was rapidly dropped according to increase of membrane fouling within initial 1 h of operation, and almost constant after 3 h. And treatment efficiencies of turbidity and NOM were stable and high values of 99.52% and 96.63%, respectively.

Effect of Oral Ingestion of Chitosan and Alginate on the Removal of Orally Ingested Radiostrontium ($^{85}Sr$) in Mice (마우스에서 경구투여한 방사성스트론튬의 제거에 대한 경구투여 카이토산과 알긴산의 효과)

  • Kim, Hee-Kyung;Kim, Kwang-Yoon;Bom, Hee-Seung;Choi, Keun-Hee;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.130-134
    • /
    • 1993
  • Radiostrontium is one of fallouts. It can be absorbed through intestine and causing radiation injury to bones. The purpose of this study is to evaluate the inhibitory effect of 10% chitosan (water soluble and insoluble) and 10% alginate (water soluble and insoluble) on radiostrontium adsorption. Water soluble and insoluble chitosans and alginates were given to 10 NIH male mice in each group for 7 days. At the 7th day, 74 MBq of $^{85}Sr$ were given through orogastric tube. Chitosans and alginates were given for additional 7 days. During the 7 days, radioactivities of feces were counted daily. Finally animals were sacrificed, and radioactivities of bones were counted. Fecal excretion was significantly higher in chitosan and alginate group as compared to control from the 1st day (p < 0.01). Water soluble chitosan group showed highest fecal excretion. Bony retention was significantly lower in the treated group than the control (p < 0.01). There was no difference among treated groups. In conclusion, both water soluble and insoluble chitosans and alginates were effective agents on lowering orally ingested radiostrontium ($^{85}Sr$).

  • PDF

Cholesterol Improvement Effects of Fermented Defatted Soybean Grits Added to Corchorus olitorius (몰로키아 첨가 탈지대두grit(defatted soybean grit) 발효물의 콜레스테롤 개선 효과)

  • Kim, Hyun-Jeong;Lee, Sung-Gyu;Lee, Sam-Pin;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.375-380
    • /
    • 2011
  • This study was performed to investigate cholesterol improvement effects of adding fermented defatted soybean grit (FD) and FD added to 5 or 10% Corchorus olitorius (FDC). Cholesterol adsorption in the FD and FDC group was more than 70%. Apolipoprotein AI and CIII improved in HepG2 cells, and a greater improvement effect was shown in FDC than that in FD. We also investigated the effect of FDC on body lipid metabolism and a high-fat diet for 4 weeks. Rats were divided into control (Con), high-fat (HF), HF treated with 20% FD (HF-FD), and HF treated with 20% FDC (HF-FDC) groups. Plasma total cholesterol and low density lipoprotein-cholesterol concentrations, hepatic total cholesterol, and triglyceride contents were significantly lower in the HF-FDC group than those in the HF group. Additionally, fecal total cholesterol and triglyceride contents increased in rats treated with FDC. Hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase activities were significantly lower in the HF-FDC group than those in the HF group.

Preparation and Characterizatino of Nano-sized Liposome Containing Proteins Derived from Coptidis rhizoma (황련유래 단백질이 함유된 나노리포좀의 제조 및 특성)

  • Oh, Seng Ryong;Lee, Sang Bong;Cho, Kye Min;Choi, Moon Jae;Jin, Byung Suk;Han, Yong Moon;Lee, Young Moo;Shim, Jin Kie
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Coptidis Rhizoma, an antimicrobial agent from natural source, is known to have the antiviral effect on the Candida albicans that causes the infectious dermatitis. The valuable protein was extracted from the Coptidis Rhizoma, To prevent denaturalization from external stimulus and improve adsorption onto the skin, the nano-sized liposomes were prepared as a carrier. The CPR-containing liposomes showed an average diameter of 187 nm, surface charge of 3.337 mV and 33% encapsulation efficiency. The release behavior of CRP from the liposome was investigated with various temperature and releasing time. The PVA solution was coated on the surface of liposome to improve the stability. The coated liposome showed slow release behavior in comparison with the non-coated liposome. The CRP in the liposome maintained the effect on the Candida albicans after treating it at 50 and with ultraviolet for 24 h.

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.

Effect of Partially Oxidized Ti Powder on Electrical Properties and Microstructures of $BaTiO_3$-based Ceramics ($BaTiO_3$계 세라믹스의 전기적 성질과 미세조직에 미치는 부분산화 Ti 분말 첨가의 영향)

  • Kim, Jun-Gyu;Jo, Won-Seung;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.671-676
    • /
    • 2000
  • $BaTiO_3$-based ceramics with partially oxidized Ti powders were prepared by sintering at $1350^{\circ}C$ for 1 h in v vacuum, and then heated in air. In this study, the effect of partially oxidized Ti powders on electrical properties and microstructures of $BaTiO_3$-based ceramics was investigated. It was found out that the semiconductive $BaTiO_3$-based ceramics beζame to show excellent PTCR (more than $10^5$) characteristic by adding 5~7 vol% of partially oxidized Ti powder. Also, it was found out that the sintered compact had extremely porous and fine-grained microstructure. The relative density and grain size of sintered compact with 5 vol% of partially oxidized Ti powders were 54% and $1.3\;{\mu\textrm{m}}$, respectively. The mechanism for the development of PTCR characteristic in $BaTiO_3$-based ceramics with partially oxidized Ti powders due to the adsorption of oxygen at grain boundaries, and could be explained, based on Heywang model.

  • PDF

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.