• Title/Summary/Keyword: Adsorption and dissociation

Search Result 44, Processing Time 0.031 seconds

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

DFT Study for Adsorption and Decomposition Mechanism of Trimethylene Oxide on Al(111) Surface

  • Ye, Cai-Chao;Sun, Jie;Zhao, Feng-Qi;Xu, Si-Yu;Ju, Xue-Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2013-2018
    • /
    • 2014
  • The adsorption and decomposition of trimethylene oxide ($C_3H_6O$) molecule on the Al(111) surface were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employed a supercell ($6{\times}6{\times}3$) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between $C_3H_6O$ molecule and Al atoms induce the C-O bond breaking of the ring $C_3H_6O$ molecule. Subsequently, the dissociated radical fragments of $C_3H_6O$ molecule oxidize the Al surface. The largest adsorption energy is about -260.0 kJ/mol in V3, V4 and P2, resulting a ring break at the C-O bond. We also investigated the decomposition mechanism of $C_3H_6O$ molecules on the Al(111) surface. The activation energies ($E_a$) for the dissociations V3, V4 and P2 are 133.3, 166.8 and 174.0 kJ/mol, respectively. The hcp site is the most reactive position for $C_3H_6O$ decomposing.

A Study on the Reaction Kinetics of Nitrogen Compounds over Bimetallic Molybdenum Catalysts (이금속성 형태 몰리브덴 촉매를 이용한 질소화합물의 반응속도 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • It is interesting to discover the reaction kinetics of the newly developed molybdenum containing catalysts. The dissociation/adsorption of nitrogen on molybdenum surface is known to be structure sensitive, which is similar to that of nitrogen on iron surface. The rates over molybdenum nitride catalysts are increased with the increase of total pressure. This tendency is the same as that for iron catalyst, but is quite different from that for ruthenium catalyst. The activation energies of the molybdenum nitride catalysts are almost on the same level, although the activity is changed by the addition of the second component. The reaction rate is expressed as a function of the concentration of reactants and products. The surface nature of $CO_3Mo_3N$ is drastically changed by the addition of alkali, changing the main adsorbed species from $NH_2$ to NH on the surface. The strength of $NH_x$ adsorption is found to be changed by alkali dopping.

A Study on the Adsorption of Sulfonamide Antibiotics on Activated Carbon Using Density Functional Theory (DFT 계산을 활용한 Sulfonamide계 항생물질의 활성탄 흡착에 관한 연구)

  • Jo, Jun-Ho;Lim, Dong-Hee;Seo, Gyu Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.457-463
    • /
    • 2013
  • The removal of sulfonamide antibiotics (SAs) by activated carbon was investigated by using granular activated carbon (GAC) tests and density functional theory (DFT) simulations. The GAC absorption tests show the removal efficiency of 68.4~90.7% and 99.0~99.9% in 1 and 24 hours, respectively. In both GAC tests, the removal efficiency of sulfamethazine (SMZ) was the highest followed by those of sulfathiazole (STZ) and sulfamethoxazole (SMTZ): SMZ > STZ > SMTZ. In DFT adsorption simulations, we found that the 4-aminobenzenesulfonamide parts of SMZ and STZ and the 3-methyl-1,2-oxazol-5-amine part of SMTZ are preferentially adsorbed on the edges of graphene model, provided that the adsorbates keep their structures without dissociation upon adsorption process. The adsorption energies of SMZ, STZ, and SMTZ are -4.91, -4.64, and -4.62 eV, respectively. This adsorption strength (SMZ > STZ > STMZ) agrees with the trend of the removal efficiency of SAs by GAC. In addition, dissociative adsorption configurations of SAs are discussed.

Binding Characteristics of Molecularly Imprinted Polymers for Ibuprofen Enantiomers (아이뷰프로펜 이성질체에 대한 molecularly imprinted polymers의 binding 특성)

  • 신명근;조규헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • The molecularly imprinted polymers(MIPs) synthesized at various polymerization conditions were examined as ibuprofen receptors in terms of binding characteristics. The 4-vinylpyridine polymers had 1.2 times higher adsorption capability for (S)-(+)-ibuprofen than the methacrylic acid polymers. The methacrylic acid polymers synthesized by UV radiation had 1.9 times higher selectivity for (S)-(+)-ibuprofen compared to those by thermal initiation. Effects of various solvents for binding were also examined in this research. According to the Scatchard analysis, the (S)-(+)-ibuprofen artificial receptors had two different kinds of binding sites for (S)-(+)-ibuprofen while having only single kind of binding site for ketoprofen. The binding sites of (S)-(+)-ibuprofen, n were calculated as 4.3~4.9 $\mu$mol/g and the dissociation constants, $K_D$ were 0.68 mM for the specific binding.

  • PDF

The analysis of the optical response of merocyanine LB films using QCM (수정진동자를 이용한 메로시아닌 색소 LB막의 광반응 특성)

  • Kang, Ki-Ho;Kim, Jeong-Myung;Chang, Jung-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.434-436
    • /
    • 2000
  • In this study, we investigate the optical characteristics of merocyanine dye Langmuir-Blodgett(LB) film using the oscillation characteristics of quartz crystal. As results, the resistance and frequency shift at the parallel resonance under the UV irradiation is to be going down. This behaviour of resistance and frequency is different from the case of general mass adsorption into the organic film on the quartz crystal. Generally the frequency decrease of quartz crystal oscillator, which has been considered as mass loading, goes along with the resistance increase. Thus it has been suggested that the J-aggregate dissociation in merocyanine dye LB film by UV irradiation give rise to transformation of oscillation characteristics of quartz crystal.

  • PDF

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

A Simulational Study of a Simple Fluid Monolayer on a Smooth Solid Surface (연속고체 표면 위의 단순유체 홑층에 대한 시늉연구)

  • Han, Kyu-Kwang
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • A Lennard-Jones fluid layer adsorbed on a smooth solid surface was studied at coverages $\theta$ ~ 0.8 to 1.8 on an isotherm by performing intensive grand canonical Monte Carlo simulations. The results clearly show a picture of two-step melting process which used to be observed in recent thermodynamic measurements of argon monolayer melting on graphite. The observed melting process consist of an abrupt density change followed by a gradual transition. Snapshots of monolayer configurations indicate that the creation and dissociation of a dislocation pair are involved in the melting mechanism. Taking the effect of system size into account, it is suggested that, while the abrupt density change may be not related to the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY), the second gradual transition is probably a KTHNY-type melting transition.

  • PDF

Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes (Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구)

  • Lee, Ho;Kim, Jin-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.