• Title/Summary/Keyword: Adsorption Model

Search Result 896, Processing Time 0.026 seconds

Hevea brasiliensis - A Biosorbent for the Adsorption of Cu(II) from Aqueous Solutions

  • Sivarajasekar, N.
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2007
  • The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.

Adsorption of lisinopril and chlorpheniramine from aqueous solution on dehydrated and activated carbons

  • El-Shafey, El-Said I.;Al-Lawati, Haider A. J.;Al-Saidi, Wafa S. H.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.12-22
    • /
    • 2016
  • Date palm leaflets were used as a precursor to prepare dehydrated carbon (DC) via phosphoric acid treatment at 150℃. DC, acidified with H3PO4, was converted to activated carbon (AC) at 500℃ under a nitrogen atmosphere. DC shows very low surface area (6.1 m2/g) while AC possesses very high surface area (829 m2/g). The removal of lisinopril (LIS) and chlorpheniramine (CP) from an aqueous solution was tested at different pH, contact time, concentration, and temperature on both carbons. The optimal initial pH for LIS removal was 4.0 and 5.0 for DC and AC, respectively. However, for CP, initial pH 9.0 showed maximum adsorption on both carbons. Adsorption kinetics showed faster removal on AC than DC with adsorption data closely following the pseudo second order kinetic model. Adsorption increases with temperature (25℃–45℃) and activation energy (Ea) is in a range of 19–25 kJ mol/L. Equilibrium studies show higher adsorption on AC than DC. Thermodynamic parameters show that drug removal is endothermic and spontaneous with physical adsorption dominating the adsorption process. Column adsorption data show good fitting to the Thomas model. Despite its very low surface area, DC shows ~70% of AC drug adsorption capacity in addition of being inexpensive and easily prepared.

Fundamental Studies for the Adsorption Features of Malachite Green on Granular Activated Carbon (활성탄에 의한 말라카이트 그린 흡착 특성에 관한 기초연구)

  • Baek, Mi-Hwa;Choi, Young-Jin;Kim, Young-Ji;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.459-463
    • /
    • 2009
  • The adsorption features of malachite green onto activated carbon have been investigated for its treatment from aqueous solution. The influential factors were examined the initial concentration of malachite green, reaction temperature, and pH. Under experimental conditions, adsorption equilibrium of malachite green was attained within 2 hr after the adsorption started. The adsorption reaction of malachite green followed the pseudo-second order rate model, and the adsorption rate constants(k2) decreased with increasing initial concentrations of malachite green. Adsorption behavior of malachite green on activated carbon was found to follow the Freundlich model well in the initial adsorbate concentration range. With increase in temperature, the adsorbed amount of malachite green at equilibrium increased, which indicate that the adsorption reaction was endothermic reaction. Thermodynamic parameters for malachite green adsorption reaction were estimated at varying temperatures, and in the pH range of 2-10, adsorption of malachite green increased.

Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes (Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • Adsorption characteristics of Eosin Y dye by carbon nano tubes (CNTs) were examined through batch experiments. CNTs used in the study had specific surface area of $106.9m^2/g$, porosity volume of $1.806cm^3/g$, and porosity diameter of $163.2{\AA}$, respectively. Adsorption experiments were carried out as function of contact time, initial solution pH (2~10), dye concentration (100, 150 and 200 mg/L), adsorbent dose (0.05~1.0 g) and temperature (293, 313 and 333 K). The adsorption was favoured at lower pHs and temperatures. Adsorption data were well described by the Langmuir model. The adsorption process followed the pseudo-second order kinetic model. The adsorption capacity decreased with increase in temperature. The results of the intraparticle diffusion model suggested that film diffusion and particle diffusion were simultaneously occured during the adsorption process. Thermodynamic studies suggested the spontaneous and endothermic nature of adsorption of Eosin Y dye onto CNTs.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon (활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.255-261
    • /
    • 2016
  • Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor ($R_L=0.202{\sim}0.243$), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

Validity of Inter-Particle Models for the Mass-Transfer Kinetics of a Fin-Tube-Type Adsorption Bed (핀-튜브형 흡착탑 해석시 입자간 물질전달 모델의 타당성 검증)

  • Ahn, Sang Hyeok;Hong, Sang Woo;Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.660-667
    • /
    • 2013
  • This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube-type adsorption bed using a two-dimensional numerical model with silica-gel and water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of inter-particle models used to simulate mass-transfer kinetics were examined, such as a constant pressure model and non-constant pressure model, and the valid ranges of the diffusion ratio for each model are proposed. The COP and SCP have been numerically calculated as the performance indexes according to the diffusion ratio. The constant pressure model, which is commonly used in previous research, was found to be valid only in a limited range of diffusion ratio.

Moringa Oleifera, A Biosorbent for Resorcinol Adsorption-Isotherm and Kinetic Studies

  • Kalavathy, M. Helen;Swaroop, G.;Padmini, E.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • The adsorption of phenolic compound resorcinol on activated carbons prepared from Moringa oleifera (Drumstick bark) has been investigated. Activated carbon was prepared by impregnating Moringa oleifera with 50% phosphoric acid in the ratio of 1:1 and 1:2(w/w), designated as MOAC1 and MOAC2. Equilibrium and isotherm studies were carried out. The influences of variables such as contact time, initial concentration of resorcinol, carbon dosage in the solution on percentage adsorption and adsorption capacity of the bark have been analysed. The equilibration time was found to be 4 h. Kinetics of resorcinol onto activated carbons was checked for pseudo first order and pseudo second order model. It was found that the adsorption of resorcinol follows pseudo second order kinetics for both MOAC1 and MOAC2. The isotherm data were correlated with isotherm models, namely Langmuir and Freundlich. Adsorption isotherms were satisfactorily fitted by both the Langmuir and Freundlich model for MOAC1 and MOAC2.

Breakthrough Characteristics for Lithium Ions Adsorption in Fixed-bed Column Packed with Activated Carbon by Modified with Nitric Acid (질산으로 개질한 활성탄을 충전한 고정층에서 리튬이온 흡착시의 파과특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1143-1149
    • /
    • 2014
  • The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.

Adsorption Characteristics of Nickel, Zinc and Cadmium Ions using Alginate Bead (Alginate Bead를 이용한 니켈, 아연, 카드뮴의 흡착특성에 관한 연구)

  • Jung, Heung-Joe
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This study investigated the adsorption characteristics of nickel, zinc and cadmium ions from the aqueous solution onto the alginate bead. Adsorption equilibrium capacities of the heavy metal ions increased with increasing initial pH of the solution. The adsorption equilibrium isotherm of the heavy metal ions was well represented by Langmuir equation. The magnitude of adsorption capacity of the heavy metal ions onto alginate bead was the order of cadmium > zinc > nickel. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the heavy metal ions. The internal diffusion coefficient of the heavy metal ions in the intraparticle were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model (SDM) and pore diffusion model (PDM). The internal diffusion of the heavy metal ions in the intraparticles was explained by PDM.