Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.012

Adsorption of lisinopril and chlorpheniramine from aqueous solution on dehydrated and activated carbons  

El-Shafey, El-Said I. (Chemistry Department, College of Science, Sultan Qaboos University)
Al-Lawati, Haider A. J. (Chemistry Department, College of Science, Sultan Qaboos University)
Al-Saidi, Wafa S. H. (Chemistry Department, College of Science, Sultan Qaboos University)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 12-22 More about this Journal
Abstract
Date palm leaflets were used as a precursor to prepare dehydrated carbon (DC) via phosphoric acid treatment at 150℃. DC, acidified with H3PO4, was converted to activated carbon (AC) at 500℃ under a nitrogen atmosphere. DC shows very low surface area (6.1 m2/g) while AC possesses very high surface area (829 m2/g). The removal of lisinopril (LIS) and chlorpheniramine (CP) from an aqueous solution was tested at different pH, contact time, concentration, and temperature on both carbons. The optimal initial pH for LIS removal was 4.0 and 5.0 for DC and AC, respectively. However, for CP, initial pH 9.0 showed maximum adsorption on both carbons. Adsorption kinetics showed faster removal on AC than DC with adsorption data closely following the pseudo second order kinetic model. Adsorption increases with temperature (25℃–45℃) and activation energy (Ea) is in a range of 19–25 kJ mol/L. Equilibrium studies show higher adsorption on AC than DC. Thermodynamic parameters show that drug removal is endothermic and spontaneous with physical adsorption dominating the adsorption process. Column adsorption data show good fitting to the Thomas model. Despite its very low surface area, DC shows ~70% of AC drug adsorption capacity in addition of being inexpensive and easily prepared.
Keywords
adsorption; lisinopril; chlorpheniramine; dehydrated; activated carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gupta P, Mathur N, Bhatnagar P, Nagar P, Srivastava S. Genotoxicity evaluation of hospital wastewaters. Ecotoxicol Environ Saf, 72, 1925 (2009). http://dx.doi.org/10.1016/j.ecoenv.2009.05.012.   DOI
2 El-Shafey EI, Al-Lawati H, Al-Sumri AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci, 24, 1579 (2012). http://dx.doi.org/10.1016/s1001-0742(11)60949-2.   DOI
3 Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, Oh JE. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82, 179 (2011). http://dx.doi.org/10.1016/j.chemosphere.2010.10.026.   DOI
4 Parfitt K, Martindale M. The Complete Drug Reference, 32nd ed., Pharmaceutical Press, 898 (1999).
5 Li Z, Chang PH, Jean JS, Jiang WT, Hong H. Mechanism of chlorpheniramine adsorption on Ca-montmorillonite. Colloids Surf A: Physicochem Eng Aspects, 385, 213 (2011). http://dx.doi.org/10.1016/j.colsurfa.2011.06.013.   DOI
6 El-Shafey EI, Al-Lawati HAJ, Al-Hussaini AY. Adsorption of fexofenadine and diphenhydramine on dehydrated and activated carbons from date palm leaflets. Chem Ecol, 30, 765 (2014). http://dx.doi.org/10.1080/02757540.2014.894986.   DOI
7 Moreno-Castilla C, López-Ramón MV, Carrasco-Marı́n F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 38, 1995 (2000). http://dx.doi.org/10.1016/s0008-6223(00)00048-8.   DOI
8 Boehm HP. Chemical identification of surface groups. Adv Catal, 16, 179 (1966). http://dx.doi.org/10.1016/S0360-0564(08)60354-5.   DOI
9 Thorpe VA. Collaborative study of the cation exchange capacity of peat materials. J Assoc Off Anal Chem, 56, 154 (1973).
10 American Society for Testing and Materials. Standard Test Method for Apparent Density of Activated Carbon, ASTM, West Conshohocken, PA, D2854 (1996).
11 American Society for Testing and Materials. Standard Test Method for Total Ash Content of Activated Carbon, ASTM, West Conshohocken, PA, D2866 (1996).
12 Al Lawati HAJ, Al-Azwani M,Varma GB, Suliman FEO, Al Kindy SMZ. Towards an ideal method for analysis of lisinopril in pharmaceutical formulations using a tris(2,2′-bipyridyl)-ruthenium(II)-peroxydisulfate chemiluminescence system in a two chip device. Anal Methods, 4, 773 (2012). http://dx.doi.org/10.1039/c2ay05616j.   DOI
13 Sellés-Pérez MJ, Martín-Martínez JM. Application of α and n plots to N2 adsorption isotherms of activated carbons. J Chem Soc Faraday Trans, 87, 1237 (1991). http://dx.doi.org/10.1039/ft9918701237.   DOI
14 Lua AC, Yang T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J Colloid Interface Sci, 274, 594(2004). http://dx.doi.org/10.1016/j.jcis.2003.10.001.   DOI
15 Gómez-Serrano V, Acedo-Ramos M, López-Peinado AJ, Valenzuela-Calahorro C. Oxidation of activated carbon by hydrogen peroxide: study of surface functional groups by FT-i.r. Fuel, 73, 387(1994). http://dx.doi.org/10.1016/0016-2361(94)90092-2.   DOI
16 Roberts JD, Caserio MC. Basic Principles of Organic Chemistry, 2nd ed., W.A. Benjamin, Inc., Menlo Park, CA, 599 (1977).
17 Wang, SL, Chuang CH, Lin SY. pH-dependent coordination of metal-lisinopril complex investigated by attenuated total reflection/Fourier transform infrared spectroscopy. Chem Pharm Bull, 50, 78 (2002). http://dx.doi.org/10.1248/cpb.50.78.   DOI
18 Moreno-Villoslada I, González F, Rivas BL, Shibue T, Nishide H. Tuning the pKa of the antihistaminic drug chlorpheniramine maleate by supramolecular interactions with water-soluble polymers. Polymer, 48, 799 (2007). http://dx.doi.org/10.1016/j.polymer.2006.12.015.   DOI
19 Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div, 89, 31 (1963).
20 HoYS. Review of second-order models for adsorption systems. J Hazard Mater, 136, 681 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.12.043.   DOI
21 Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater, 150, 619 (2008). http://dx.doi.org/10.1016/j.jhazmat.2007.05.011.   DOI
22 Moreno-Castilla C, Carrasco-Marín F, López-Ramón MV, Alvarez-MerinoMA. Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 39, 1415 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00268-2.   DOI
23 Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W. Removal of PCBs from wastewater using fly ash. Chemosphere, 53, 655 (2003). http://dx.doi.org/10.1016/s0045-6535(03)00517-4.   DOI
24 Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther, 77, 17 (2005). http://dx.doi.org/10.1016/j.clpt.2004.08.026.   DOI
25 Wang X, Guocheng L, Wang Q, Zhu Z, Li Z, Mao F, Wu L. Adsorption of chlorpheniramine from water by rectorite. Chem Ind Eng Prog, 4, 938 (2012).
26 Wu Z, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel. Chem Eng J, 112, 227 (2005). http://dx.doi.org/10.1016/j.cej.2005.07.011.   DOI
27 Chern JM, Wu CY. Desorption of dye from activated carbon beds: effects of temperature, pH, and alcohol. Water Res, 35, 4159 (2001). http://dx.doi.org/10.1016/s0043-1354(01)00127-0.   DOI
28 Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, Zou L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour Technol, 99, 2938 (2008). http://dx.doi.org/10.1016/j.biortech.2007.06.027.   DOI
29 Rege SU, Yang RT, Cain CA. Desorption by ultrasound: phenol on activated carbon and polymeric resin. AIChE J, 44, 1519 (1998). http://dx.doi.org/10.1002/aic.690440706.   DOI
30 Al-Ghouti MA, Khraisheh MAM, Ahmad MN, Allen SJ. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite. J Hazard Mater, 146, 316 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.12.024.   DOI
31 Aksu Z, Gönen F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem, 39, 599 (2004). http://dx.doi.org/10.1016/s0032-9592(03)00132-8.   DOI