• 제목/요약/키워드: Adsorption Measurement

검색결과 222건 처리시간 0.028초

발포알루미늄을 이용하여 제조한 기능성 판넬 특성 연구 (Characteristics of the Functional Panel Made from Foamed Aluminum)

  • 김재용;엄명헌;안대현;심명진
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.62-66
    • /
    • 2006
  • 본 연구에서는 폐 알루미늄을 이용하여 제조한 환경친화형인 발포 알루미늄 기능성 판넬의 특성을 조사하였고, 증점 공정, 교반 혼합 공정, 발포 공정, 냉각 공정을 거쳐 첨색 공정에 의한 제품 품질의 고급화를 추구하였다. 시험은 크게 세 가지로 구분하여 음향투과 손실 시험, 흡음율 측정 시험, 그리고 발포작업조건 및 스크랩 혼합시험을 시행하였다. 그 결과 폐 알루미늄을 이용해 만든 기능성 판넬은 초경량성이며 방음과 차음, 유해전자파 차폐에 탁월하고 약 $2.2kcal/mh^{\circ}C$ 정도로 낮은 열전도율 및 뛰어난 단열효과를 보이는 것으로 나타났다.

빗살형 전극을 가지는 정전용량형 습도센서와 그 신호처리회로의 설계와 제작 (The Design and Fabrication of Capacitive Humidity Sensor Having Interdigit Electrodes and its Signal Conditional Circuitry)

  • 박세광;강정호;박진수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권3호
    • /
    • pp.144-148
    • /
    • 2001
  • For the purpose of developing capacitive humidity sensor having interdigit electrodes, interdigit electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thichness. For the development of ASIC, switched capacitor signal conditioning circuits for capacitive humidity sensor were designed and simulated by cadence using 0.25um CMOS process parameters. The signal conditioning circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is 0.4%R.H./$^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of 3%R.H. ${\sim}$ 98%R.H.. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigit electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc..

  • PDF

DETERMINATION OF THE 129I IN PRIMARY COOLANT OF PWR

  • Choi, Ke Chon;Park, Yong Joon;Song, Kyuseok
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.61-66
    • /
    • 2013
  • Among the radioactive wastes generated from the nuclear power plant, a radioactive nuclide such as $^{129}I$ is classified as a difficult-to-measure (DTM) nuclide, owing to its low specific activity. Therefore, the establishment of an analytical procedure, including a chemical separation for $^{129}I$ as a representative DTM, becomes essential. In this report, the adsorption and recovery rate were measured by adding $^{125}I$ as a radio-isotopic tracer ($t_{1/2}$ = 60.14 d) to the simulation sample, in order to measure the activity concentration of $^{129}I$ in a pressurized-water reactor primary coolant. The optimum condition for the maximum recovery yield of iodine on the anion exchange resins (AG1 x2, 50-100 mesh, $Cl^-$ form) was found to be at pH 7. In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of $^{129}I$ was examined, as was the effect of $^3H$ on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous $^3H$ presence was found with activity concentrations of $^3H$ lower than 50 Bq/mL, and with a boron concentration of less than 2,000 ${\mu}g/mL$.

염기처리시간에 따른 지르코니아 현탁액의 분산성과 굴절율 변화 (Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time)

  • 조충희;함동석;이재흥;류주환;이기윤;조성근
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.

Investigation of Demixing Phenomena of a Polymer Solution During the Phase Inversion Process

  • Han, Myeong-Jin;D. Bhattacharyya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.11-15
    • /
    • 1995
  • Polysulfone (PS) membranes were prepared by the phase inversion process using water or isopropanol as nonsolvent. The Flory-Huggins theory for a ternary system nonsolvent/solvent/polymer is applied to describe the thermodynamic equilibria of the components. The calculated ternary phase equilibria show that demixing of a PS binary solution with n-methylpyrrolidone (NMP) will be fast in a water coagulation bath and will be delayed in an isopropanol bath. The prepared membranes were characterized by SEM, gas adsorption-desorption measurement, and permeability test. The membrane, which is precipitated by fast demixing in a water bath, has nodular structures in the skin region and includes finger-like cavities in the sublayer. The membrane coagulated by isopropanol has a very dense and thick skin structure, which is formed by delayed demixing. The membrane coagulated by isopropanol showed considerably lower pore volume and surface area compared to that observed with water coagulation method. With dimethylformamide (DMF) as solvent and 2-3 wt% of water, the solution can show the liquid-liquid phase separation due to agglomation of the polymer-lean phase from the homogeneous solution. The membranes, which were coagulated near an equilibrium state, show the large (micron size) round pores in the whole membranes. The pores do not contribute the permeation characteristics.

  • PDF

각형 전기이중층 커패시터의 산업 안전성 (Industry safety characteristic of Prismatic EDLCs)

  • 김경민;장인영;강안수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석 (Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film)

  • 박상원;남수경;허재은
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

지방산 LB초박막의 수평방향에 대한 유기가스 반응특성 (Organic Gas Response Characteristics for Horizontal Direction of Fatty Acid LB Ultra-thin Films)

  • 이준호;최용성;김도균;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.379-384
    • /
    • 1999
  • Langmuir-Blodgett(LB) films which have high ordered orientation and ordering structure are fabricated by LB method which deposit the ultra-thin films of organic materials at a molecular level. The electrical characteristics of stearic acid LB ultra-thin films for the horizontal direction were investigated to develop the gas sensor using LB ultra-thin films. The optimal deposition condition to deposit the LB ultra-thin films was obtained from $\pi-A$ isotherms and the deposition status of stearic acid LB ultra-thin films was verified by the measurement of deposition ratio, UV-absorbance, and electrical properties for LB ultra-thin films. The conductivity of stearic acid LB ultra-thin films for horizontal direction was about $10_{-8}[S/cm]$. The activation energy for LB ultra-thin films with respect to variation of temperature was about 1.0[eV], which was correspond to semiconductor material. The response characteristics for organic gas were confirmed by measuring the response time, recovery time, and reproducibility of the LB ultra-thin to each organic gas. Also, the penetration and adsorption behavior of gas molecule were confirmed through the organic gas response characteristics of LB ultra-thin films with respect to temperature.

  • PDF

표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석 (Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect)

  • 정재봉;채준열;정양진;김지훈
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.