• 제목/요약/키워드: Adsorption Characteristics

검색결과 1,435건 처리시간 0.026초

저질개선제에 의한 수용액상의 As(III)와 Cr(VI) 흡착 특성 (Adsorption characteristics of As(III) and Cr(VI) from aqueous solution by Sediment Amendment Composite)

  • 신우석;나규리;김영기
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.216-221
    • /
    • 2016
  • The adsorption characteristics of mixed heavy metals (Cr(III), As(VI)) in aqueous solution were investigated using a sediment amendment composite. Sediment amendment composite was composed of clean sediment (40%), zeolite (20%), recycled aggregate (10%), steel slag (10%), oyster shell (10%), and cement (10%). The experimental results showed that the adsorption equilibrium was attained after 180 mins. Heavy metal adsorption was characterized using Freundlich and Langmuir equations. The equilibrium adsorption data for the sediment amendment composite better fitted with the Langmuir model than the Freundlich model. The maximum adsorption capacity of Cr(VI) (36.07 mg/g) was higher than As(III) (25.54 mg/g); and the adsorption efficiency of the Cr(VI) and As(III) ions solution decreased with decreasing pH from 2 to 10. The collective results suggested that the sediment amendment composite is a promising material for a reactive cap that controls the release of Cr(VI) and As(III) from contaminated sediments.

유기용제 측정용 흡착관 개발을 위한 AC 및 ACF의 흡착특성 (Desorption characteristics of Activated Carbon and Activated Carbon Fiber by Development of Sorbent Tube for Measurement of Organic Solvent)

  • 원정일;김기환;신창섭
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.99-109
    • /
    • 2002
  • Charcoal $tube/CS_2$ method are more popularly used than any other in the measurement of the working environment for the exposure evaluation of organic solvent, but it is some weak points that the lower accuracy can be obtained on the polar materials and within the range of the low concentration. Thus solvent desorption method has been developed to make accuracy higher and to overcome some weak points. However, because of high price of adsorption tube for thermal desorption and the short of study on its application to the working environment, it is not popularly used in the domestic industrial hygiene fields. This dissertation aims to develop thermal desorption and adsorption tubes for measuring organic solvents in the working environment, by comparing and analyzing breakthrough condition and adsorption capacity with ACF. Specific surface area of ACF used in this study is wider than the one of AC and micropore of ACF related with adsorption has been developed, and adsorption velocity and adsorption amount are very excellent by linking a pore of surface and an inside well into micropore. 1. Result of analysis on physical characteristics of adsorbent, the specific surface area of ACF was 1.3 times higher than that of AC. Distribution ratio of micropore related to adsorption was 94% on ACF and AC. Result of SEM, micropore of the AC is opened to the surface. In contrast, ACF shows that extremely fast adsorption speed. Because of micropore are exposed on the surface and penetrate through each other. 2. Breakthrough characteristics of adsorbents was not different from slop of breakthrough curve. The effluent concentration reaches 10% of initial concentration($C_{out}/C_{in}=0.1$, break point) of ACF was 30~316min longer than that of AC. Therefore, the adsorption capacities of ACF was 1.1~4.6 times higher than that of AC. ACF can be used as a proper adsorbent for measurement of organic solvent.

제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성 (Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria)

  • 이창한;현성수;감상규
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1261-1274
    • /
    • 2020
  • The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).

산과 염기의 개질에 의해 변화된 활성탄의 표면특성과 흡착특성 비교 (Comparison of Surface Characteristics and Adsorption Characteristics of Activated Carbons Changed by Acid and Base Modification)

  • 이송우;이민규;박상보
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.565-571
    • /
    • 2008
  • The surface properties of activated carbon modified by acids and base were studied. The influence of the surface chemistry on the adsorption of benzene and acetone vapor on modified activated carbons has been investigated The modified activated carbons were obtained by treatment with acetic acid ($CH_3COOH$), nitric acid ($HNO_3$) and sodium hydroxide (NaOH). The modified activated carbons had similar porosity but different surface chemistry and adsorption characteristics. The total surface acidity (sum of functional groups) of activated carbon (AC-AN) treated by nitric acid was 2.6 times larger than that of activated carbon (AC) before the acid treatment. Especially, carboxyl group was much developed by nitric acid treatment. The benzene equilibrium adsorption capacity of AC-AN decreased 20% more than that of AC. However, the acetone equilibrium adsorption capacity of AC-AN increased 20% more than that of AC because of the large increase of carboxyl group and acidity.

층상이중수산화물을 이용한 인 흡착 (Phosphorus Adsorption by Layered Double Hydroxide)

  • 정용준;민경석
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.404-410
    • /
    • 2005
  • A series of batch type adsorption experiments were performed to remove aquatic phosphorus, where the layered double hydroxide (HTAL-CI) was used as an powdered adsorbent. It showed high adsorption capacity (T-P removal: 99.9%) in the range of pH 5.5 to 8.8 in spite of providing low adsorption characteristics (pH<4). The adsorption isotherm was approximated as a modified Langmuir type equation, where the maximum adsorption amount (50.5mg-P/g) was obtained at around 80mg-P/L of phosphorus concentration. A phosphate ion can occupy three adsorption sites with a chloride ion considering the result that 1 mol of phosphate ion adsorbed corresponded to the 3 moles of chloride ion released. Although the chloride ion at less than 1,000mg-CI/L did not significantly affect the adsorption capacity of phosphate, carbonate ion inhibited the adsorption property.

합성 Goethite에 의한 인산이온, 황산이온 및 구리이온의 흡착 특성 (Adsorption Characteristics of Phosphate, Sulfate, and Copper Ions by Synthesized Goethite)

  • 김정두;유수용;문명준;감상규;주창식;이민규
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.1011-1016
    • /
    • 2003
  • Adsorption of phosphate, sulfate, and copper ion to goethite was investigated. Goethite was prepared in the alkaline solution. In the single adsorbate systems, the final equilibrium plateau reached within 20 min. The adsorption isotherms of the individual ions could be well described by the Langmuir equation. The maximum adsorption capacities (q$\_$max/) were calculated as 0.483 m㏖/g and 0.239 m㏖/g at pH 3 for phosphate and sulfate ion, and 0.117 m㏖/g at pH 6 for copper ion, respectively, In competitive adsorption system with phosphate and sulfate, phosphate ion was a stronger competitor for adsorption on goethite than sulfate ion, which was consistent with higher affinity of phosphate ion for the surface compared to sulfate ion. The existence of sulfate ion enhanced the adsorption of copper ion but the adsorption of sulfate was inhibited when copper ion was present.

폐CDQ 분진을 흡착제로 한 페놀제거특성에 관한 연구 (A Study on the Removal Characteristics of Phenol Using Waste CDQ Dust as Adsorbent)

  • 김진화;이정민;김동수
    • 대한환경공학회지
    • /
    • 제22권7호
    • /
    • pp.1213-1223
    • /
    • 2000
  • CDQ 분진을 흡착제로 사용하여 페놀의 흡착제거 양상을 검토하였다. CDQ 분진의 흡착능은 300 ppm의 페놀 용액에 대해 흡착평형시간 60분에서 약 42%의 흡착율을 보이는 것으로 나타났다. 페놀의 초기농도를 달리하여 흡착실험한 결과, 실험조건범위에서 농도가 증가함에 따라 흡착제거율이 증가하였으며 흡착양상은 Freundlich 등온흡착식에 잘 적용되었다. 흡착의 속도론적 해석시, 시간에 따른 속도식의 차수는 1차, 1.5차, 그리고 2차로 변화하는 것으로 파악되었다. 온도에 따른 흡착에서는 온도가 상승함에 따라 흡착제거량이 증가하여 흡열임을 보였으며, 이의 결과를 바탕으로 흡착에 대한 열역학적 데이터를 도출하였다. pH변화에 따른 페놀의 흡착량은 거의 변화가 없는 것으로 관찰되었으나, pH 11 이상의 영역에서는 다소 감소하는 것으로 나타났다.

  • PDF

Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성 (Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes)

  • 이민규;윤종원;서정호
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.771-777
    • /
    • 2017
  • Carbon nano tubes (CNTs)를 흡착제로 사용하여 회분식 실험을 통해 염료 Eosin Y의 흡착특성을 조사하였다. 본 연구에 사용된 CNTs는 비표면적이 $106.9m^2/g$, 기공부피는 $1.806cm^3/g$, 기공직경은 $163.2{\AA}$이었다. CNTs를 이용한 Eosin Y의 흡착실험은 흡착시간, 초기 pH (2~10), 염료 농도(100, 150 및 200 mg/L), 흡착제의 양(0.05~1.0 g)과 온도(293, 313 및 333 K)를 변수로 사용하여 수행하였다. 흡착은 pH와 온도가 낮을수록 잘 이루어졌으며, Langmuir 모델식에 잘 적용되었다. 또한 흡착반응은 유사 2차 속도식에 잘 적용되었으며, 온도가 증가함에 따라 흡착량이 감소하였다. 입자 내 확산 모델 결과는 흡착 과정에서 막확산과 입자확산이 동시에 일어나는 것을 시사해 주었다. 열역학적 해석에 의하면 CNTs에 의한 염료 Eosin Y의 흡착은 자발적이고 흡열특성을 보였다.

Na2CO3, K2CO3 및 Li2CO3 첨착활성탄을 이용한CO2 제거 -고정층 반응기에서의 CO2 흡착특성- (Removal CO2 Using Na2CO3, K2CO3 and Li2CO3 Impregnated Activated Carbon -Characteristics of CO2 Adsorption in Fixed Bed Reactor-)

  • 최원준;정종현
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.240-246
    • /
    • 2008
  • The purpose of this study was to gain basic information on the characteristics of $CO_2$ adsorption in relation to $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon in a Fixed Bed Reactor. From the results of this study the following conclusions were made: $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon had a longer breakthrough time and more enhanced adsorption capacity than activated carbon alone. When tested with isothermal adsorption and tested for $CO_2$ adsorption the amount of $CO_2$ adsorbed varied with temperature, $CO_2$ inlet concentration, gas flow rate, aspect ratio, etc. Based on the results, when Langmuir, Freundlich and Dubinin-Polanyi adsorption isotherms were used for linear regression of isothermal adsorption data, Langmuir adsorption isotherm was the most suitable. And, the optimum condition for $Na_2CO_3$ and $K_2CO_3$ impregnated activated carbon make-up was 1N and $Li_2CO_3$ was 0.1N. It could be concluded that adsorption capacity was decreased with adsorption temperature and increased gas concentration. When the aspect ratio (L/D) was varied 0.5, 1.0 and 2.0, the significant drop of adsorption amount was observed below 1.0 and breakthrough time was shortened with gas flow rate.

실로퓨트의 세팔로마닌 흡착: 등온흡착식 및 속도론적·열역학적 특성 (Adsorption of Cephalomannine onto Sylopute: Isotherm, Kinetic and Thermodynamic Characteristics)

  • 김현식;김진현
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.219-224
    • /
    • 2019
  • 본 연구에서는 흡착공정에 의한 Taxus chinensis 유래 세팔로마닌의 효율적 분리를 위하여, 흡착 온도, 흡착 시간 및 초기 세팔로마닌 농도를 달리하여 상용흡착제 실로퓨트에 의한 세팔로마닌의 흡착 특성을 조사하였다. 흡착 평형 데이터는 Temkin 흡착등온식에 가장 적합하였다. 흡착 온도가 증가함에 따라 흡착 용량은 감소하였으며, 물리적 흡착 공정임을 알 수 있었다. 속도론적 데이터는 유사 이차 반응속도식에 적합하였다. 입자 내 확산 모델에 의하면, 필름 확산과 입자 내 확산은 전체 흡착 속도에 거의 영향을 미치지 않았다. 열역학적 데이터를 통해 흡착 과정은 발열 반응이며 자발적이었다. 또한 흡착량이 증가함에 따라 등량흡착열은 거의 변화가 없었으며 흡착제의 표면 에너지가 균일함을 알 수 있었다.