• Title/Summary/Keyword: AdoMet (S-adenosyl-$_L$ methionine)

검색결과 8건 처리시간 0.027초

췌조직과 성장 발육에 따른 흰쥐 조직내 S-Adenosylmethionine Synthetase 활성도 및 S-Adenosyl-L-methionine의 분포 (Distribution of S-Adenosylmethionine Synthetase in the Pancreatic Tissues of Various Animals and Changes of S-Adenosylmethionine Synthetase Activities and S-Adenosylmethionine in the Developing Rat Organs)

  • 박승희;유태무;홍성렬;이향우
    • 약학회지
    • /
    • 제38권4호
    • /
    • pp.430-439
    • /
    • 1994
  • S-Adenosyl-L-methionine synthetase (ATP: methionine S-Adenosyltransferase, EC 2.5.1.6; AdoMet synthetase) catalyzes the biosynthesis of S-Adenosyl-L-methionine(AdoMet) from methionine in the presence of ATP. To elucidate the role of transmethylation reaction in the pancreatic tissues, we examined AdoMet synthetase and isozyme activities, and AdoMet contents in the various tissues. The activities of AdoMet synthetase marked the highest in the kidney, and the lowest in the testis among the various tissues of rat. Considerable amounts of AdoMet synthetase activities were detected in the pancreatic tissues of various animals except for those of frog. The level of ${\alpha}$ and ${\gamma}$ isozyme activities were present in the pancreatic tissues of various animals, while ${\beta}$ isozyme activities were detected as trace. AdoMet synthetase activities of rat brain, liver, testis were decreased with growth. In the rat pancreatic tissues, AdoMet synthetase activities were increased during 16 days after birth and then decreased between 16 and 47 days of age. Levels of AdoMet contents of rat brain and testis were decreased with growth. However, AdoMet contents of rat pancreas were decreased until 26 days of age, and then increased thereafter. AdoMet synthetase isozyme patterns did not vary with growth in the pancreas and testis. But, in the liver, ${\beta}$ form is strikingly increased with growth.

  • PDF

A synthesis of sugar-modified S-adenosyl-L-homocysteine(AdoHcy) analogues as inhibitors of AdoHcy hydrolase via the coupling sugar-modified adenosine analogues with L-homocysteine sodium salt.

  • Kim, Beom-Tae;Kim, Seung-Ki;Ryu, Jeong-Hyun;Hwang, Ki-Jun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.235.3-236
    • /
    • 2003
  • S-adenosyl-L-homocysteine(AdoHcy) is the product of all biological methylation in which S-adenosyl-L-methionine (AdoMet) is utilized as a methyl donor and is reversibly hydrolyzed to L-homocysteine and adenosine by AdoHcy hydrolase physiologically. Inhibition of this enzyme results in intracelluar accumulation of AdoHcy leading to a feedback inhibition of AdoMet-dependent methylation reactions which are essential for viral replication. (omitted)

  • PDF

CRYSTAL STRUCTURE OF tRNA ($m^1$ G37) METHYLTRANSFERASE

  • Ahn, Hyung-Jun;Lee, Byung-Ill;Yoon, Hye-Jin;Yang, Jin-Kuk;Suh, Se-Won
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.17-17
    • /
    • 2003
  • tRNA (m¹ G37) methyltransferase (TrmD) catalyze s the trans for of a methyl group from S-adenosyl-L-methionine (AdoMet) to G/sup 37/ within a subset of bacterial tRNA species, which have a residue G at 36th position. The modified guanosine is adjacent to and 3' of the anticodon and is essential for the maintenance of the correct reading frame during translation. We have determined the first crystal structure of TrmD from Haemophilus influenzae, as a binary complex with either AdoMet or S-adenosyl-L-homocysteine (AdoHcy), as a ternary complex with AdoHcy/phosphate, and as an apo form. The structure indicates that TrmD functions as a dimer (Figure 1). It also suggests the binding mode of G/sup 36/G/sup 37/ in the active site of TrmD and catalytic mechanism. The N-terminal domain has a trefoil knot, in which AdoMet or AdoHcy is bound in a novel, bent conformation. The C-terminal domain shows a structural similarity to DNA binding domain of trp or tot repressor. We propose a plausible model for the TrmD₂-tRNA₂ complex, which provides insights into recognition of the general tRNA structure by TrmD (Figure 2).

  • PDF

AdoMet Derivatives Induce the Production of Actinorhodin in Streptomyces coelicolor

  • Lee Yu-Kyung;Young Jung-Mo;Kwon Hyung-Jin;Suh Joo-Won;Kim Jin-Young;Chong You-Hoon;Lim Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.965-968
    • /
    • 2006
  • Exogenous S-adenosyl-L-methionine (AdoMet) enhances the production of actinorhodin in Streptomyces coelicolor. Thirty compounds related structurally with AdoMet were tested for their actinorhodin production. The relationships between the structures of the compounds tested and their actinorhodin production were analyzed using computational methods, and the molecules containing both bulky substituents at the C6 position of adenine and the long 5'-alkyl chain of adenosine were predicted to show high actinorhodin production.

O-Methyltransferases from Arabidopsis thaliana

  • Kim, Bong-Gyu;Kim, Dae-Hwan;Hur, Hor-Gil;Lim, Jun;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.113-119
    • /
    • 2005
  • O-methylation mediated by O-methyltransferases (OMTs) is a common modification in natural product biosynthesis and contributes to diversity of secondary metabolites. OMTs use phenylpropanoids, flavonoids, other phenolics and alkaloids as substrates, and share common domains for S-adenosyl-L-methionine (AdoMet) and substrate binding. We searched Arabiposis genome and found 17 OMTs genes (AtOMTs). AdoMet- and substrate-binding sites were predicted. AdoMet binding domain of AtOMTs is highly conserved, while substrate-binding domain is diverse, indicating use of different substrates. In addition, expressions of six AtOMT genes in response to UV and in different tissues were investigated using real-time quantitative reverse transcriptase-polymerase chain reaction. All the AtOMTs investigated were expressed under normal growth condition and most, except AtOMT10, were induced after UV illumination. AtOMT1 and AtOMT8 were expressed in all the tissues, whereas AtOMT10 showed flower-specific expression. Analysis of these AtOMT gene expressions could provide some clues on AtOMT involvement in the cellular processes.

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo;Kim, Suk-Weon;Liu, Jang-Ryol;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • 제5권3호
    • /
    • pp.289-295
    • /
    • 2011
  • The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

Arabidopsis 피토크롬 돌연변이체에서 ethylene 생합성 조절 작용 (Regulation of Ethylene Biosynthesis in Phytochrome Mutants of the Arabidopsis Root)

  • 박지혜;김순영
    • 생명과학회지
    • /
    • 제22권4호
    • /
    • pp.559-564
    • /
    • 2012
  • 식물생장과 발달에 중요한 역할을 하는 phytochrome이 ethylene 생합성에 미치는 영향을 조사하기 위하여 여러 빛 조건에서 키운 phyA, phyB, phyAB에서 ethylene 생합성과 생합성에 관여하는 enzyme activity를 측정하였다. White light에서 키웠을 때 모든 mutant에서 ethylene 생합성이 감소되었다. 특히 double mutant에서는 wild type과 비교하여 37%가 감소하였다. Dark에서 키웠을 때에는 wild type만 감소하였고, mutant에서는 감소효과가 나타나지 않았다. Red light에서 키웠을 때 double mutant에서 급격한 감소가 일어났다. Far-red light 에서 키웠을 때는 phyB만 감소가 일어나지 않았다. Ethylene 생합성에 관여하는 enzyme인 ACO 활성 패턴과는 달리ACS 활성 패턴은 ethylene 생성 패턴과 유사하게 나타났다. 이 결과를 바탕으로 ethylene 생합성에는 phytochrome A와 B 모두 중요한 작용을 하며 특히 $P_r$ 형태의 phytochrome이 ethylene 생성량을 조절한다는 것을 제시한다. 또한 phytochrome은 ethylene 생합성 단계에서 AdoMet가 ACC로 전환되는 단계에서 조절하는 것을 제시한다.

옥수수 뿌리에서 굴중성 반응과 에틸렌 생성에 미치는 Phorbol 12-myristate 13-acetate 조절 작용 (Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize)

  • 정윤호;김종식;이건주;김순영
    • 생명과학회지
    • /
    • 제22권1호
    • /
    • pp.87-91
    • /
    • 2012
  • 암을 유발하는 phorbol ester로 알려진 Phorbol 12-myristate 13-acetate (PMA)는 동물세포에서 신호전달 효소의 하나인 protein kinase C (PKC)를 활성화시킨다. 본 연구에서는 옥수수 일차뿌리에서 PMA가 에틸렌 생성을 통하여 굴중성 반응을 조절하는 효과를 연구하였다. PMA는 8시간 동안 $10^{-6}$ M과 $10^{-4}$ M에서 농도 의존적으로 뿌리 생장과 굴중성 반응을 촉진시켰다. 이러한 촉진 효과는 PKC의 억제제인 staurosporine (STA)에 의해 상쇄되었다. 이 결과는 굴중성 반응이 신호전달 체계에 관여하는 protein kinase C를 통하여 조절될 가능성을 제시하고 있다. 식물호르몬인 에틸렌도 뿌리 생장과 굴중성 반응에 중요한 역할을 한다고 알려져 있다. 에틸렌 생성은 $10^{-6}$ M과 $10^{-4}$ M PMA에 의하여 각각 26%와 37% 증가하였다. PMA는 또한 ACC synthase (ACS) 활성을 촉진시켰다. 또한 이 증가 효과는 STA에 의하여 상쇄되었다. 이 결과는 옥수수 뿌리에서 굴중성 반응은 에틸렌 생성을 거쳐 protein kinase를 통하여 조절될 가능성을 제시하고 있다.