• Title/Summary/Keyword: Admixture

Search Result 1,156, Processing Time 0.031 seconds

Analysis of the Possibility of Rapid Quality Appraisal of Water-Reducing Agents Using the Liquid Densimeter and pH Meter (액체 밀도계 및 pH meter기를 이용한 감수제의 신속품질평가 가능성 분석)

  • Kim, Min-Sang;Hyun, Seong-Yong;Baek, Cheol;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.210-211
    • /
    • 2017
  • According to KS F 2560, water-reducing agents used when mixing concrete are to undergo quality evaluation testing slump, air contents, setting time, etc., when delivered from the admixture factory to the ready mixed concrete site. Yet in actual acceptance testing this could be substituted by the score report of the admixture company, in which a possibility of low reliability lies. Therefore this study sought to analyze whether by artificially changing the solid content rate of lignin- and naphthalene-based water-reducing agents and using a liquid densimeter evaluate the quality of the admixture. The results showed that the Type B liquid densimeter was most appropriate and 50cc the most appropriate capacity for the mass cylinder. Also, judging from the changes in density and pH according to the changes in solid content rate, it concludes that a rapid appraisal of the quality of lignin- and naphthalene-based water-reducing agents would be possible using a Type B liquid densimeter.

  • PDF

An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)- (해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교-)

  • Park, Yong-Kyu;Yoon, Gi-Won;Kim, Hyun-Woo;Kim, Yong-Ro;Song, Young-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • Yoo, Jae-Kang;Kim, Dong-Seuk;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3~4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

A Study on Early Age Shrinkage of Concrete using Recycled Aggregate (재생골재를 사용한 콘크리트의 초기재령 수축에 관한 연구)

  • Koo, Bong-Kuen;Seo, Sang-Gu;Rha, Jae-Woong;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • Cracks in reinforced concrete structures reduce overall durability by allowing the penetration of water and aggressive agents, thereby accelerating the deterioration of the reinforcing steel. Highway pavement and bridge decks are especially susceptible to this type of deterioration since these structures exhibit high rates of shrinkage and are frequently exposed to aggressive environmental conditions. The objectives of this investigation included the development of experimental procedures for assessing shrinkage cracking potential of recycled aggregate concrete, the evaluation of mix composition on shrinkage cracking potential, and the development of theoretical models to simulate early-age cracking behavior. Specifically, the influences of shrinkage-reducing admixture(SRA) and recycled aggregate concrete were investigated. The shrinkage-reducing admixture substantially reduces free shrinkage and restrains shrinkage cracking while providing similar mechanical properties. A fracture mechanics modeling approach was developed to predict the behavior of a variety of restrained concrete specimens. This modeling approach was used to successfully explain experimental results from a variety of mixture compositions. The model was used to demonstrate the influence of material and structural properties on the potential for cracking.

A Study on the Function of Organic Admixture in Fly Ash Substituting Fresh Concrete (플라이애쉬를 혼합(混合)한 굳지않은 콘크리트에 있어서 유기혼화제(有機混和劑)의 기능(機能)에 관한 연구(研究))

  • Moon, Han Young;Sea, Joung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • From the test results of the adsorption characteristics of AE admixture, it was shown that the adsorption of AE admixture on fly ash was mearly completed in 30 minutes and the higher was ignition loss, the larger the quantity of saturation adsorption. Because most of the ignition loss of the fly ash was due to the unburned carbon, it could be said that the unburned carbon is the main reason of reduction of air content in AE concrete. On the other hand, in the case of superplasticizer, the amount of saturation adsorption in fly ash was lower than in cement and the same result was obtained in the dispersive effect. But, when using superplasticizer in fly ash substituting concrete, the fludity in the concrete was not decreased.

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • 유재강;김동석;이상수
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzaolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3∼4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by the Cooling Method after Heat Treatment (소성가공한 폐 벤토나이트 분말의 냉각방법에 따른 포졸란 반응성에 관한 실험적 연구)

  • Kim, Hyo-Yeul;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.139-146
    • /
    • 2002
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various environmental trouble as soil and water pollution est. This study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

An Experimental Study on the Strength-Development Properties of Mortar with Discarded Bentonite Powder (폐 벤토나이트 분말을 흔입한 모르터의 강도 발현 특성에 관한 실험적 연구)

  • 정민수;김효열;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.2-29
    • /
    • 2003
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, the quantity of bentonite is increasingly used on construction industry day by day. But, the discarded bentonite that is excessively used at underground excavation works causes various environmental trouble such as soil and water pollution etc. Therefore, this study aims to propose a foundamental report about pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out the strength-development properties of mortar with discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments such as flow test, and compressive strength test on curing age of mortar are excuted. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, the strength-development properties of mortar mixing with discarded Bentonite powder is superior to the situation of $600^{\circ}C$.60min-cooling using of water.

  • PDF

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Jee, NamYong;Kim, Jae-Hun;Jeong, Yong;Shin, Jae-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.127-131
    • /
    • 2009
  • The purpose of this study is to provide fundamental data on chloride diffusion from lightweight aggregate concrete by utilizing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated after experiment based on NT BUILD 492. Diffusion coefficient of SLG and CLG were little bit higher than CG Concrete, but the difference is meaningless. Also, chloride diffusion coefficient indicates that it is highly affected by water-binder ratio, and it decreases with the decrease in water-binder ratio. The admixture substitution indicates decrease only with water-binder ratio of 0.4 for FA15% case, but admixture substitution indicates decrease with all levels of ratio for FA10 + BFS20% which means more appropriate. According to the analysis result of chloride diffusion from lightweight aggregate concrete, crushed stone-powder utilized lightweight aggregate concrete indicates higher chloride diffusion coefficient than CG concrete, which is not a significant difference, and can improve resistance through water-binder ratio and admixture substitution.

  • PDF