• Title/Summary/Keyword: Admixture

Search Result 1,155, Processing Time 0.021 seconds

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

Effects of inorganic fluosilicate agent on the properties of concrete (규불화염계 혼화제가 콘크리트의 물성에 미치는 영향)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.187-194
    • /
    • 2005
  • This paper deals with a waterproof and mechanical feature of concrete using an inorganic self waterproof agent. The waterproof agents having been used in our country were a membrane agent, penetration agent and an organic waterproof agent. However, these agents have a lot of problems such as losing the effect of waterproof in the environment of lots of water, the difficulty of dispersion. For the clear of problems of these water -proof agents, we used the inorganic waterproof agent. This agent was made from inorganic fluosilicate. Generally, a waterproof agent has been used only for the waterproof effect. In this paper, however through the some tests of concrete using the inorganic self waterproof agent, we recognized that the concrete using the agent is more excellent in some peculiar properties than general concrete's properties. In this paper, we performed compressive strength, permeability, pore volume test, etc. As a result, the concrete of using the agent is more excellent in economy, waterproof, compressive strength.

Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash (플라이애시 혼합 콘크리트의 철근 부식 저항성능 평가)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • The role of fly ash in concrete become impotent with finding the characteristics of fly ash in which it is used as cement replacement material. In this paper, corrosion test results obtained by two test methods such as the long-term exposure corrosion test and the accelerated corrosion test method, were compared to investigated the corrosion resistance between fly ash concrete and normal concrete. Corrosion initiation time was measured in two types of concrete, i.e., one mixed with fly ash(FA) and the other without admixture(OPC). The accelerated corrosion test was carried out by four case, i.e., two samples is a cyclic drying-wetting method combined without carbonation(case 1) and combined with carbonation(case 2), and the other two samples is a artificial seawater ponding test method combined without carbonation(case 3) and combined with carbonation(case 4). Whether corrosion occurs, it was measures using half-cell potential method. The ponding test combined without carbonation was most effective in accelerating corrosion time of steel bars. The results indicated that the corrosion of rebar embedded in concrete occurred according to the order of OPC, FA. The delay relative ratio of corrosion obtained by corrosion initiation time between FA and OPC is 1.04 to 1.27. Consequently, fly ash concrete as the age increases its corrosion resistance was improved compared with OPC concrete.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

The Vegetational and Environmental History of the Pre-Holocene Period in the Korean Peninsula (한반도 식생 및 환경변천사(홀로세 이전 시대를 중심으로))

  • Kong, Woo-Seok
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1992
  • The reconstruction of the vegetational and environmental history of the Korean peninsula by the use of various fossil floral data from the Carboniferous period to the Pre-Holocene is reviewed. Though the oldest plant fossil in Korea (Neuropteris) dates back to the Carboniferous period, the first appearance of many of the present-day floristic genera indeed dates back to the Oligocene (c. 40 to 20 million years B.P.), and includes many thermophilous genera. The presence of thermophilous genera in the Oligocene at up to four degrees north of their present distributional limits implies that the climate of the Oligocene was warmer than that of today. The occurrence of similar thermophilous floristic element at up to six degrees north of their present range during the Middle Miocene suggests a maximum northward expansion of warmth-loving evergreen broadleaved vegetation for, recent Korean vegetation history. The continued occurrence of numerous present-day genera since the Oligocene period indicates a long-term stability of Korean vegetation, along with minor fluctuations within it. The admixture of evergreen coniferous plants and deciduous breadleaved plants, however, indicates a probable temperate climate for much of the Middle Pleistocene. There are couple of evidences which are indicative of an early-stage anthropogenic disturbance of natural vegetation during the Middle Pleistocene of Korea. The presence of cold-episodes during the Upper Pleistocene caused a general expansion of deciduous plants and cryophilous evergreen coniferous, plants. It is likely that the maximum southward expansion of cryophilous arctic-alpine and alpine floras in Korea occured during the penultimate glacial period. The disappearance of some cryophilous genera from 10,000 years B.P. marks the continued climatic amelioration since then, along with minor climatic fluctuations during the Holocene period.

  • PDF

On the Chemical Properties of Nursery Soil in Cultivation of Panax ginseng (인삼포상토(人蔘圃床土)의 화학적(化學的) 성상(性狀)에 관(關)한 연구(硏究))

  • Lim, Sun-Uk
    • Applied Biological Chemistry
    • /
    • v.18 no.2
    • /
    • pp.65-70
    • /
    • 1975
  • The cultivation of ginseng plant (Panax ginseng C.A. Meyer) in Korea as an eminent medicinal herb may be traced far back in history. However, the practices in cultivation have not much improved in terms of efficiency and scientific farming. In the present study some experiments were undertaken for the search of the soil and nutrition conditions, because of the nutritional requirement of ginseng plant shaws quite unique compared with other crops. In both the seed bed and the field 'Yakto' has been traditionally employed or the prime source of nutrition of the crop. Yakto is a complex matter prepared from raw foliage of the broad-leaved trees as the main portion with the admixture of a variety of organic nitrogen source through fermentative processes. The composition of Yakto may be classified coarsely into the decomposed and undecomposed substances, the former being further fractionated according their solubilities, comprising also various colloidal matters whose composition and structure are yet to be known. The Yakto-fractions were subjected to analyze for search of its nature and coarse composition in terms of the distribution of nitrogen, contents of organic functional groups such as -COOH, phenolic-OH, alcholic-OH and methoxyl and hydrolysable sugars. Furthermore, absorption-spectra of each fraction were determined in visible and infrared region and compared the results each other.

  • PDF

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

Combined Effect of Gamma Irradiation and Silk Peptide on the Radio-sensitivity of Bacteria and Storage Stability of Ready-to-eat Hamburger Patty (감마선 조사와 실크 펩타이드 병용처리가 세균의 방사선 감수성 및 햄버거 패티의 저장 안정성에 미치는 영향)

  • Kim, Jae-Hun;Park, Jin-Gyu;Song, Beom-Seok;Lee, Ju-Woon;Kim, Wang-Geun;Hwang, Young-Jeong;Byun, Myung-Woo
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2007
  • This study was conducted to evaluate the combined effect of gamma irradiation and silk peptide on the radiosensitivity of bacteria and the storage stability of ready-to-eat hamburger patty. The $D_{10}$ values obtained for Escherichia coli, Listeria ivanovii, Salmonella typhimurium and Clostridium sporogenes by gamma irradiation were 0.25, 0.50, 0.55 and 1.35 kGy, respectively. The inactivation rate of S. typhimurium ($D_{10}=0.53kGy$) inoculated into hamburger patty with 5%(w/w) silk peptide was reduced 6% compared with the control $D_{10}=0.558kGy$). In acceleration storage at $30^{\circ}C$, microorganisms were not observed in samples irradiated with 7 kGy or 10 kGy during storage. However the irradiation at 5 kGy was insufficient to sterilize the contaminated microorganisms in hamburger patty regardless of the addition of silk peptide (5%). These results indicate that the combined treatment of gamma-irradiation and silk peptide admixture could be helpful to ensure storage stability of ready-to-eat hamburger patty, by controlling the preliminary microbial load.

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.