• Title/Summary/Keyword: Administration, inhalation

Search Result 68, Processing Time 0.028 seconds

Inhalation Sedation with Nitrous Oxide in Dental Treatment (Nitrous Oxide를 이용한 흡입진정)

  • Yoon, Byung-Bae
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-6
    • /
    • 2002
  • The usage of nitrous oxide is increased for the anxious patient to dental treatment. There are two methods to induce the sedation during dental treatment. One is sedation with drugs the other no need of drugs. We discussed here about sedation with drugs. The methods of drug administration are oral, intramuscular, intravenous, inhalation. The method of oral administration of drugs are convenient to patient and doctor but poor controllability. Intramuscular method is a parenteral technique that maintains several advantages over the enteral technique. However its pales in comparison to other parenteral technique. Intravenous method represents most effective method of ensuring predictable and adequate sedation in all patients. But it has inability to reverse the action of drugs after they have been injected except some drugs (e.g., narcotics and benzodiazepine). A variety of gaseous agents may be administered by inhalation to produce sedation. In dental practice, the inhalation administration of gas means use of nitrous oxide. There are many advantages of nitrous oxide administration. First, very short latent period and rapid onset of drug action which lead to possible titration of drug concentration. With nitrous oxide, clinical effects may become noticeable as quickly as 15 to 30 seconds after inhalation. Recovery from inhalation sedation is also quite rapid. In out patient dental practice rapid recovery is very important because it permit to discharge the patient without escort and the patient return to their ordinary life without limit. To success the conscious sedation with nitrous oxide, the administrator should be keep the mind that always titration of nitrous oxide concentration during induction and treatment. Careful observation need during treatment to prevent oversedation because the adequate nitrous oxide concentration to patients changed by environmental stress. Always begins with 100% oxygen and ends with 100% oxygen to prevent diffusion hypoxia which rare in clinical practice.

  • PDF

Inhibitory Effects of the Essential Oil from Nardostachys intamansi on Central Nervous System after Inhalation and Oral Administration (감송향 정유성분의 흡입 및 경구투여시의 중추신켱 억제효과)

  • Koo Byung-Soo;Kim Dae-kun;Choi Jung-Hyun;Lee Dong-Ung
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.156-161
    • /
    • 2006
  • The essential oil of Nardostachys jatamansi (Valerianaceae), which has been used for a long time in aroma therapy, was investigated after inhalation or oral administration for its analgesic effect, anticonvulsant action, hypnotic effect and in vitro inhibitory activity on monoamine oxidase. This fragrance oil showed a significant analgesic effect in the phenylquinone-induced .writhing test, suppressed the convulsion induced by pentylenetetrazole and lengthened the pentobarbital-induced sleeping time in a time-dependent manner after fragrance inhalation or dose-independently by oral administration. Its inhibitory activity on monoamine oxidase was remarkable, showing $49.4\%$ inhibition at a concentration of 5.0 mg/ml. Six new terpenes with seven known compounds were detected by our GC-MS analytical conditions used. As a result, the essential oil fragrance of Nardostachys jatamansi would be clinically useful for a sedative by either inhalation or oral administration.

Does Inhaled Peppermint Essential Oil Affect Blood Pressure?

  • Park, Sah-Hoon;Kim, Kun-Hee;Park, Jong-Seong
    • Journal of Integrative Natural Science
    • /
    • v.14 no.3
    • /
    • pp.95-98
    • /
    • 2021
  • By far, studies on the effect of oral administration of peppermint essential oil on blood pressure are not consistent, increasing or decreasing. And the effect of inhalation of peppermint essential oil on blood pressure was not reported. This study was designed to clarify the effect of peppermint essential oil inhalation on the blood pressure and autonomic nervous system. Blood pressure and heart rate variability (HRV) as an indicator of autonomic nervous system activity were measured. The systolic and diastolic blood pressure was not changed significantly by inhalation of peppermint essential oil. Standard deviation of normal to normal (SDNN), a parameter of total activity of autonomic nervous system also was not changed significantly. High frequency (HF) power level, an indicator of parasympathetic nervous system activity was not changed by peppermint. These results indicate that action mechanism of peppermint essential oil on blood pressure is different by the method of administration, oral or inhalation.

Effects of Gami-Choakwiyeum on the PPAR-${\gamma}$ in the Bronchial sthma Mouse Model (천식 쥐 모델에서 가마좌귀음이 PPAR-${\gamma}$에 미치는 영향)

  • Lee, Hai-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1593-1597
    • /
    • 2006
  • We hope to evaluate the effects of Gami-Choakwiyeum (GCKY) on the PPAR-${\gamma}$’ in the OVA induced asthma mouse model. Female BALB/c mice, 8 weeks of age and free of murine specific pathogens were used. Mice were sensitized by intraperitoneal injection of OVA emulsified in aluminum hydroxide in a total volume of 200 ${\mu}{\ell}$ on one day and 14 days. On 21, 22, and 23 days after the initial intraperitoneal injection of OVA, the mice were challenged using an ultrasonic nebulizer. GCKY was administered 7 times by oral gavage at 24 hour intervals fromdays 19 after intraperitoneal injection of OVA. Bronchoalveolar lavage was perfromed 72 hours after the last challenge, and total cell numbers in the BAL fluid were counted. Also, the level of PPAR-${\gamma}$ of normal and OVA-induced asthma moused with/without administration of GCKY were measured by Western blot analysis. For the histologic examination, the specimens were stained with hematoxylin 2 and eosin-Y.(H & E). Numbers of total cells were increased significantly at 72 h after OVA inhalation compared with numbers of total cells in the normal and the administration of GCKY. Especially, the increased numbers of eosinophils in BAL fluids after OVA inhalation were significantly increased. However, the numbers of eosinophils reduced by the administration of GCKY. Western blot analysis revealed that PPAR-${\gamma}$ levels in nuclear level were increased slightly after OVA inhalation compared with the levels in the normal group. After the administration of GCKY, PPAR-${\gamma}$ levels in cytosolic and nuclear levels at 72 h after OVA inhalation were markedly increased. On pathologic examination, there were many acute inflammatory cells around the alveoli, bronchioles, and airway lumen of mice with OVA-induced asthma compared with inflammatory cells in the normal group. However, acute inflammatory cells around alveoli, bronchioles, and airway lumen markedly decreased after administration of GCKY, GCKY can increase a PPAR-${\gamma}$ level and could be an effective treatment in asthma patients through the PPAR-${\gamma}$ mechanism for bronchial asthma.

Changes of Amino Acid Neurotransmitter Contents in Rat Brain by Toluene Inhalation (톨루엔 흡입이 뇌내 아미노산 신경전달물질 함량에 미치는 영향)

  • 이선희;신대섭;김부영
    • Biomolecules & Therapeutics
    • /
    • v.3 no.1
    • /
    • pp.91-96
    • /
    • 1995
  • The effects of toluene inhalation on the contents of amino acid neurotransmitters in rat brain were investigated and blood toluene concentrations inducing changes of behavior and amino acid neurotransmitter contents in rat brain were observed. Male wistar rats were exposed to toluene vapor (single dose : 1700, 5000 and 10000 ppm for 2 hrs, repeated dose : 1700 and 5000 ppm for 2 hrs/day$\times$6 days). Toluene concentrations in blood and the inhalation chamber were assayed by GC with headspace sampler. HPLC method following PITC derivatization was used to measure the amino acid contents in brain tissues such as frontal cortex, caudate, hippocampus, cerebellum and brain stem. Glutamic acid and aspartic acid levels were increased by single inhalation of toluene (5000 ppm) in all the brain areas assayed in this experiment. In caudate and cerebellum, taurine levels were decreased by single inhalation of low dose toluene (1700 ppm), but increased by repeated administration. At high blood toluene concentration, GABA levels were increased in all the brain areas assayed in this experiment and the increasing extents of inhibitory amino acid contents measured in caudate and hippocampus were greater than those of excitatory amino acids. These results suggest that the changes of amino acid neurotransmitter contents in brain by exposure to toluene may modulate toluene-induced behaviors.

  • PDF

Subchronic Inhalation Toxicity of iso-Butylalcohol in Rats

  • Jang, Beom-Su;Lim, Jong-Hwan;Yun, Hyo-In;Park, Jong-Il;Ha, Chang-Su;Kim, Jong-Choon;Kim, Hyeon-Yeong;Chung, Yong-Hyun;Jeong, Jae-Hwang
    • Toxicological Research
    • /
    • v.16 no.4
    • /
    • pp.302-309
    • /
    • 2000
  • The purpose of this study is to investigate toxic effects of iso-butylalcohol (iBA) in Sprague-Dawley (SD) rats under the exposure of 6 hours a day, 5 days a week for 13 weeks by inhalation, and to evaluate the occupational safety of iBA in comparison with the permissible exposure level (PEL) stipulated by the Occupational Safety and Health Administration (OSHA). iBA did not induce any abnormal changes from the aspects of clinical signs, feed consumption, ophthalmic test, urinalysis, hematology and blood chemistry during and at the terminal of the inhalation toxicity tests. We did not find any abnormal findings in the gross and microscopic observations due to the inhalation of iBA. There was no alteration in relative organ weights by the inhalation of iBA. No observed adverse effect level (NOAEL) of iBA was considered to be more than 3,000 ppm in rats under the inhalation of 6 hours a day, 5 days a week for 13 weeks. Fifty ppm of iBA, the PEL regulated by OSHA, is too conservative for working places. As iBA showed no abnormal observations in all the experimental parameters at any concentration under this experimental condition, we suggest that 150 ppm is safe enough for the PEL of iBA in the working areas, even taking into onsideration that OSHA lowered the PEL to 50 ppm for fear of the probable risk of its skin irritation.

  • PDF

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells

  • Yifan Wang;Hao Wei;Zhen Song;Liqun Jiang;Mi Zhang;Xiao Lu;Wei Li;Yuqing Zhao;Lei Wu;Shuxian Li;Huijuan Shen;Qiang Shu;Yicheng Xie
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.77-88
    • /
    • 2024
  • Background: Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods: A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results: Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion: PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.

EFFECT OF SUPPLEMENTARY INTRANASAL MIDAZOLAM ON ORAL SEDATION OF CHILDREN (미다졸람의 비강 내 추가투여가 소아의 경구 진정요법에 미치는 영향)

  • Jang, Su-Young;Kim, Ji-Yeon;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Effect of supplementary intranasal midazolam on oral sedation of children The purpose of this study was to compare the cardiopulmonary parameters of two sedation regimens during dental treatment: (1) Oral chloral hydrate(CH) and hydroxyzine(HZ) with nitrous oxide-oxygen($N_2O/O_2$) inhalation(CH-HZ group); (2) Oral chloral hydrate(CH) and hydroxyzine(HZ) with nitrous oxide-oxygen($N_2O/O_2$) inhalation and supplementary intranasal(IN) midazolam administration(MIDA group). Among the patients of OO hospital who received dental treatment under sedation over the past 5 years, 44 patients were selected for each group of CH-HZ and MIDA according to their age, gender and weight. Following parameters that were recorded every 5 minutes were compared: 1) Heart rate(HR) 2) $O_2$ saturation 3) End tidal carbon dioxide concentration($EtCO_2$) 4) Respiratory rate(RR) 33 patients of Group MIDA who have complete data of 15 minutes before and after supplementary IN midazolam administration were selected. And measurements 15 minutes before and after midazolam administration in same patient were evaluated. The results were as follows: 1. Heart rate was significantly higher in MIDA group than in CH-HZ group, but it was within normal range. 2. Comparing HR, $O_2$ saturation, EtCO2, RR between before and after of supplementary IN midazolam administration in the same patient, the differences were not statistically significant.

[ $N_2O-O_2$ ] INHALATION SEDATION WITH SUCTION CATHETER IN FULL MOUTH BREATHING PATIENTS (구호흡 소아환자에서 흡인도관을 이용한 $N_2O-O_2$ 진정)

  • Yoon, Hyung-Bae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.589-594
    • /
    • 1999
  • There are some problems in inhalation sedation of non-cooperative pediatric patients. Usually the pediatric patients reject the nasal hood and there's no cooperation for administration of nitrous oxide gas. In mouth breathing patient, other technics of sedation such as intravenous or oral sedation or general anesthesia were recommended. Common causes of mouth breathing are common cold, allergic rhinitis, sinus problem, anatomical disorder, and habitual mouth-breathing. However in some patient not indicated the general anesthesia and high failure rate in oral and intravenous sedation. Administration of $N_2O-O_2$ with suction catheter was applied in full mouth breathing patient. Clinically effective sedation were occurred during procedure about 45 to 55 minutes. There's no any side effects by $N_2O-O_2$ inhalation sedation. The patients awoke at the end of the procedure and received 100% oxygen for 2-3 minutes. There's still some problems in use of the suction catheter such as air pollution of operation theater and elevate arterial carbon dioxide tension.

  • PDF