• Title/Summary/Keyword: Adjoint matrix

Search Result 29, Processing Time 0.027 seconds

THE ADJOINT OF SQUARE INTUITIONISTIC FUZZY MATRICES

  • Im, Young-Bin;Lee, Eun-Pyo;Park, Se-Won
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.401-412
    • /
    • 2003
  • Using the idea of "intuitionistic fuzzy set" [l, 2, 3], we defined the concept of intuitionistic fuzzy matrices as a natural generalization of fuzzy matrices. And we introduced and studied the determinant of square intuitionistic fuzzy matrices [4]. In this paper, we investigate the adjoint of square intuitionistic fuzzy matrices.

An Affordable Implementation of Kalman Filter by Eliminating the Explicit Temporal Evolution of the Background Error Covariance Matrix (칼만필터의 자료동화 활용을 위한 배경오차 공분산의 명시적 시간 진전 제거)

  • Lim, Gyu-Ho;Suh, Ae-Sook;Ha, Ji-Hyun
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In meteorology, exploitation of Kalman filter as a data assimilation system is virtually impossible due to simultaneous requirements of adjoint model and large computer resource. The other substitute of utilizing ensemble Kalman filter is only affordable by compensating an enormous usage of computing resource. Furthermore, the latter employs ensemble integration sets for evolving the background error covariance matrix by compensating the dynamical feature of the temporal evolution of weather conditions. We propose a new implementation method that works without the adjoint model by utilizing the explicit expression of the background error covariance matrix in backward evolution. It will also break a barrier in the evolution of the covariance matrix. The method may be applied with a slight modification to the real time assimilation or the retrospective analysis.

AERODYNAMIC SENSITIVITY ANALYSIS FOR NAVIER-STOKES EQUATIONS

  • Kim, Hyoung-Jin;Kim, Chongam;Rho, Oh-Hyun;Lee, Ki Dong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.161-171
    • /
    • 1999
  • Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct differentiation method and an adjoint method respectively from discrete two-dimensional compressible Navier-Stokes equations. Unlike previous other researches, Baldwin-Lomax algebraic turbulence model is also differentiated by hand to obtain design sensitivities with respect to design variables of interest in turbulent flows. Discrete direct sensitivity equations and adjoint equations are efficiently solved by the same time integration scheme adopted in the flow solver routine. The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time by allowing the large banded flux jacobian matrix unassembled. Direct sensitivity code results are found to be exactly coincident with sensitivity derivatives obtained by the finite difference. Adjoint code results of a turbulent flow case show slight deviations from the exact results due to the limitation of the algebraic turbulence model in implementing the adjoint formulation. However, current adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior researches.

  • PDF

Derivation of Reverse-Time Migration Operator as Adjoint Operation (어드조인트 연산으로서의 역시간 구조보정 연산자 유도)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2007
  • Unlike the conventional reverse time migration method which is implemented by simply extrapolating wavefield in reverse time, this paper presents a derivation of another reverse time migration operator as the exact adjoint of the presumed forward wavefield extrapolation operator. The adjoint operator is obtained by formulating the forward time extrapolation operator in an explicit matrix equation form and then taking the adjoint to this matrix equation followed by determining the corresponding operator. The reverse time migration operator as the exact adjoint to the implied forward operator can be used not only as a migration algorithm but also as an adjoint operator which is required in the imaging through an inversion such as least-squares migration.

Mathematical Adjoint Solution to Analytic Function Expansion Nodal (AFEN) Method (해석함수전개 노달방법의 수학적 수반해)

  • Cho, Nam-Zin;Hong, Ser-Gi
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.374-384
    • /
    • 1995
  • The mathematical adjoint solution of the Analytic Function Expansion (AFEN) method is found by solving the transposed matrix equation of AFEN nodal equation with only minor modification to the forward solution code AFEN. The perturbation calculations are then performed to estimate the change of reactivity by using the mathematical adjoint The adjoint calculational scheme in this study does not require the knowledge of the physical adjoint or the eigenvalue of the forward equation. Using the adjoint solutions, the exact and first-order perturbation calculations are peformed for the well-known benchmark problems (i.e., IAEA-2D benchmark problem and EPRI-9R benchmark problem). The results show that the mathematical adjoint flux calculated in the code is the correct adjoint solution of the AFEN method.

  • PDF

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

DEVELOPMENT OF A PRECONDITIONED ADJOINT METHOD FOR ALL-SPEED FLOW ANALYSES OF QUASI ONE-DIMENSIONAL EULER EQUATIONS (준 일차원 Euler 방정식의 전속도 유동해석을 위한 예조건화 수반변수 기법의 개발)

  • Lee, H.R.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • In this study, preconditioned adjoint equations for the quasi one-dimensional Euler equations are developed, and their computational benefit at all speed is assessed numerically. The preconditioned adjoint equations are derived without any assumptions on the preconditioning matrix. The dissipation for Roe type numerical flux is also suggested to scale the dissipation term properly at low Mach numbers as well as at high Mach numbers. The new preconditioned method is validated against analytical solutions. The convergence characteristics over wide range of Mach numbers is evaluated. Finally, several inverse designs for the nozzle are conducted and the applicability of the method is demonstrated.

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

COMMUTATIVE ELLIPTIC OCTONIONS

  • Surekci, Arzu;Gungor, Mehmet Ali
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.195-208
    • /
    • 2022
  • In this article, the matrix representation of commutative elliptic octonions and their properties are described. Firstly, definitions and theorems are given for the commutative elliptic octonion matrices using the elliptic quaternion matrices. Then the adjoint matrix, eigenvalue and eigenvector of the commutative elliptic octonions are investigated. Finally, α = -1 for the Gershgorin Theorem is proved using eigenvalue and eigenvector of the commutative elliptic octonion matrix.