• Title/Summary/Keyword: Adjoint Sensitivity

Search Result 131, Processing Time 0.021 seconds

A Study on the Stochastic Sensitivity Analysis in Dynamics of Shell Structure (쉘 구조물의 확률적 동적 민감도 해석에 관한 연구)

  • Bae, Dong-Myung;Lee, Chang-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 1998
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second oder perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method : the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, where as the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they codes whose element derivative matrices can be explicitly generated. The numerical results of two cases - 2-dimensional portal frame and 3/4-cylindrical shell structure - for the deterministic and stochastic sensitivity analysis illustrates in this paper.

  • PDF

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.405-435
    • /
    • 2017
  • We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

Development of An Optimal Design Program for Open-Chain Dynamic Systems (불구속연쇄 동적시스템을 위한 최적설계 프로그램 개발)

  • 최동훈;한창수;이동수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-23
    • /
    • 1994
  • This paper proposes an optimal design software for the open-chain dynamic systems whose governing equations are expressed as differential equation. In this software, an input module and an automatic creation module of the equation of motion are developed to contrive the user's convenience. To analyze the equation of motion of the dynamic systems, variable-order and variable-stepsize Adams-Bashforth-Moulton predictor-corrector method is used to improve the efficiency. For the optimization and the design sensitivity analysis, ALM(augmented lagrange multiplier)method and adjoint variable method are adopted respectively. An output module with which the user can compare and investigate the analysis and the optimization results through tables and graphs is also provided. The developed software is applied to three typical dynamic response optimization problems, and the results compare very well with those available in the literature, demonstrating its effectiveness.

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

Design Sensitivity Analysis for Shape Optimization of Electromagnetic Device with Finite Element Method (설계민감도해석과 FEM에 의한 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.835-837
    • /
    • 2002
  • This paper presents a shape optimization algorithm of electromagnetic devices using the design sensitivity analysis with FEM. The design sensitivity and adjoint variable formulas are derived for the 3D FEM with edge element. This algorithm is applied to 3D electro-magnet pole shape optimization problem to make a uniform flux density at the target region.

  • PDF

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.